Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=9quad log b=6quad log c=4],[log ((sqrt(b^(5)c^(5)))/(a^(9)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=9logb=6logc=4logb5c5a9 \begin{array}{c} \log a=9 \quad \log b=6 \quad \log c=4 \\ \log \frac{\sqrt{b^{5} c^{5}}}{a^{9}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=9logb=6logc=4logb5c5a9 \begin{array}{c} \log a=9 \quad \log b=6 \quad \log c=4 \\ \log \frac{\sqrt{b^{5} c^{5}}}{a^{9}} \end{array} \newlineAnswer:
  1. Identify Given Logarithm Values: Identify the given logarithm values and the expression to evaluate.\newlineWe are given that loga=9\log a = 9, logb=6\log b = 6, and logc=4\log c = 4. We need to find the numerical value of log(b5c5a9)\log \left(\frac{\sqrt{b^{5}c^{5}}}{a^{9}}\right).
  2. Apply Logarithm Properties: Apply the properties of logarithms to simplify the expression.\newlineFirst, we use the quotient rule of logarithms, which states that log(ab)=log(a)log(b)\log(\frac{a}{b}) = \log(a) - \log(b).\newlinelog(b5c5a9)=log(b5c5)log(a9)\log \left(\frac{\sqrt{b^{5}c^{5}}}{a^{9}}\right) = \log (\sqrt{b^{5}c^{5}}) - \log (a^{9})
  3. Simplify Square Root: Simplify the square root and apply the power rule of logarithms.\newlineThe power rule of logarithms states that log(ak)=klog(a)\log(a^k) = k \cdot \log(a). The square root is equivalent to raising to the power of 12\frac{1}{2}.\newlinelog(b5c5)=log((b5c5)12)=12log(b5c5)\log (\sqrt{b^{5}c^{5}}) = \log ((b^{5}c^{5})^{\frac{1}{2}}) = \frac{1}{2} \cdot \log (b^{5}c^{5})
  4. Apply Product Rule: Apply the product rule of logarithms to the term inside the square root. The product rule of logarithms states that log(ab)=log(a)+log(b)\log(a \cdot b) = \log(a) + \log(b). (12)log(b5c5)=(12)(log(b5)+log(c5))(\frac{1}{2}) \cdot \log (b^{5}c^{5}) = (\frac{1}{2}) \cdot (\log (b^{5}) + \log (c^{5}))
  5. Apply Power Rule: Apply the power rule to the logarithms of bb and cc.log(b5)=5×log(b)\log (b^{5}) = 5 \times \log (b) and log(c5)=5×log(c)\log (c^{5}) = 5 \times \log (c).12×(log(b5)+log(c5))=12×(5×log(b)+5×log(c))\frac{1}{2} \times (\log (b^{5}) + \log (c^{5})) = \frac{1}{2} \times (5 \times \log (b) + 5 \times \log (c))
  6. Substitute Given Values: Substitute the given values of logb\log b and logc\log c into the expression.\newlinelogb=6\log b = 6 and logc=4\log c = 4, so we substitute these values in.\newline(1/2)×(5×log(b)+5×log(c))=(1/2)×(5×6+5×4)(1/2) \times (5 \times \log (b) + 5 \times \log (c)) = (1/2) \times (5 \times 6 + 5 \times 4)
  7. Perform Arithmetic Operations: Perform the arithmetic operations.\newline(12)×(5×6+5×4)=(12)×(30+20)=(12)×50=25(\frac{1}{2}) \times (5 \times 6 + 5 \times 4) = (\frac{1}{2}) \times (30 + 20) = (\frac{1}{2}) \times 50 = 25
  8. Apply Power Rule to Logarithm: Apply the power rule to the logarithm of a9a^{9}. \newlinelog(a9)=9×log(a)\log (a^{9}) = 9 \times \log (a) and substitute the given value of loga=9\log a = 9. \newlinelog(a9)=9×9=81\log (a^{9}) = 9 \times 9 = 81
  9. Combine Results: Combine the results to find the final value of the original expression. log(b5c5a9)=2581\log \left(\frac{\sqrt{b^{5}c^{5}}}{a^{9}}\right) = 25 - 81
  10. Perform Final Subtraction: Perform the final subtraction to get the numerical value. 2581=5625 - 81 = -56

More problems from Quotient property of logarithms