Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=-8quad log b=9quad log c=-3],[log ((a^(9)b^(9))/(c^(8)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=8logb=9logc=3loga9b9c8 \begin{array}{c} \log a=-8 \quad \log b=9 \quad \log c=-3 \\ \log \frac{a^{9} b^{9}}{c^{8}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=8logb=9logc=3loga9b9c8 \begin{array}{c} \log a=-8 \quad \log b=9 \quad \log c=-3 \\ \log \frac{a^{9} b^{9}}{c^{8}} \end{array} \newlineAnswer:
  1. Apply Logarithm Power Rule: Apply the logarithm power rule to the expression.\newlineThe power rule of logarithms states that log(an)=n×log(a)\log(a^n) = n \times \log(a). Let's apply this rule to each term in the expression.\newlinelog(a9)=9×log(a)\log(a^{9}) = 9 \times \log(a)\newlinelog(b9)=9×log(b)\log(b^{9}) = 9 \times \log(b)\newlinelog(c8)=8×log(c)\log(c^{8}) = 8 \times \log(c)
  2. Substitute Given Log Values: Substitute the given logarithm values into the expression.\newlineWe have been given loga=8\log a = -8, logb=9\log b = 9, and logc=3\log c = -3. Let's substitute these values into the expression from Step 11.\newlinelog(a9)=9×(8)\log(a^{9}) = 9 \times (-8)\newlinelog(b9)=9×9\log(b^{9}) = 9 \times 9\newlinelog(c8)=8×(3)\log(c^{8}) = 8 \times (-3)
  3. Calculate Values: Calculate the values from Step 22.\newlineNow we calculate the numerical values for each term.\newlinelog(a9)=9×(8)=72\log(a^{9}) = 9 \times (-8) = -72\newlinelog(b9)=9×9=81\log(b^{9}) = 9 \times 9 = 81\newlinelog(c8)=8×(3)=24\log(c^{8}) = 8 \times (-3) = -24
  4. Apply Logarithm Quotient Rule: Apply the logarithm quotient rule to the original expression.\newlineThe quotient rule of logarithms states that log(ab)=log(a)log(b)\log(\frac{a}{b}) = \log(a) - \log(b). Let's apply this rule to the original expression.\newlinelog(a9b9c8)=log(a9)+log(b9)log(c8)\log(\frac{a^{9}b^{9}}{c^{8}}) = \log(a^{9}) + \log(b^{9}) - \log(c^{8})
  5. Substitute Calculated Values: Substitute the calculated values from Step 33 into the expression from Step 44.\newlineNow we substitute the values we found into the expression.\newlinelog(a9b9c8)=(72)+81(24)\log\left(\frac{a^{9}b^{9}}{c^{8}}\right) = (-72) + 81 - (-24)
  6. Calculate Final Value: Calculate the final numerical value.\newlineNow we perform the arithmetic to find the numerical value.\newlinelog(a9b9c8)=(72)+81+24\log\left(\frac{a^{9}b^{9}}{c^{8}}\right) = (-72) + 81 + 24\newlinelog(a9b9c8)=9+24\log\left(\frac{a^{9}b^{9}}{c^{8}}\right) = 9 + 24\newlinelog(a9b9c8)=33\log\left(\frac{a^{9}b^{9}}{c^{8}}\right) = 33

More problems from Quotient property of logarithms