Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=7quad log b=4quad log c=6],[log ((b^(8))/(a^(6)c^(5)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=7logb=4logc=6logb8a6c5 \begin{array}{c} \log a=7 \quad \log b=4 \quad \log c=6 \\ \log \frac{b^{8}}{a^{6} c^{5}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=7logb=4logc=6logb8a6c5 \begin{array}{c} \log a=7 \quad \log b=4 \quad \log c=6 \\ \log \frac{b^{8}}{a^{6} c^{5}} \end{array} \newlineAnswer:
  1. Apply Quotient Rule: Using the given values for loga\log a, logb\log b, and logc\log c, we need to evaluate the expression log(b8a6c5)\log\left(\frac{b^8}{a^6c^5}\right). We can use the properties of logarithms to simplify the expression.\newlineFirst, apply the quotient rule of logarithms, which states that log(ab)=log(a)log(b)\log\left(\frac{a}{b}\right) = \log(a) - \log(b).\newline\log\left(\frac{b^\(8\)}{a^\(6\)c^\(5\)}\right) = \log(b^\(8) - \log(a^66c^55)
  2. Apply Product Rule: Next, apply the product rule of logarithms to the term log(a6c5)\log(a^6c^5), which states that log(ab)=log(a)+log(b)\log(ab) = \log(a) + \log(b).\newlinelog(a6c5)=log(a6)+log(c5)\log(a^6c^5) = \log(a^6) + \log(c^5)
  3. Apply Power Rule: Now, apply the power rule of logarithms to each term, which states that log(an)=nlog(a)\log(a^n) = n\log(a).\newlinelog(b8)=8log(b)\log(b^8) = 8\log(b)\newlinelog(a6)=6log(a)\log(a^6) = 6\log(a)\newlinelog(c5)=5log(c)\log(c^5) = 5\log(c)
  4. Substitute Given Values: Substitute the given values for loga\log a, logb\log b, and logc\log c into the expression.\newlinelog(b8)(log(a6)+log(c5))=8log(b)(6log(a)+5log(c))\log(b^8) - (\log(a^6) + \log(c^5)) = 8\cdot\log(b) - (6\cdot\log(a) + 5\cdot\log(c))\newline=84(67+56)= 8\cdot4 - (6\cdot7 + 5\cdot6)
  5. Perform Arithmetic Operations: Perform the arithmetic operations.\newline=32(42+30)= 32 - (42 + 30)\newline=3272= 32 - 72\newline=40= -40

More problems from Quotient property of logarithms