Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=-6quad log b=10quad log c=7],[log ((sqrtb)/(a^(5)c^(7)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=6logb=10logc=7logba5c7 \begin{array}{c} \log a=-6 \quad \log b=10 \quad \log c=7 \\ \log \frac{\sqrt{b}}{a^{5} c^{7}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=6logb=10logc=7logba5c7 \begin{array}{c} \log a=-6 \quad \log b=10 \quad \log c=7 \\ \log \frac{\sqrt{b}}{a^{5} c^{7}} \end{array} \newlineAnswer:
  1. Apply Logarithm Rules: We are given the values of loga\log a, logb\log b, and logc\log c, and we need to find the value of log(ba5c7)\log\left(\frac{\sqrt{b}}{a^{5}c^{7}}\right). First, let's apply the logarithm rules to simplify the expression. Using the quotient rule of logarithms, which states that log(xy)=log(x)log(y)\log\left(\frac{x}{y}\right) = \log(x) - \log(y), we can write: log(ba5c7)=log(b)log(a5c7)\log\left(\frac{\sqrt{b}}{a^{5}c^{7}}\right) = \log(\sqrt{b}) - \log(a^{5}c^{7})
  2. Simplify log(b)\log(\sqrt{b}): Now let's simplify log(b)\log(\sqrt{b}). The square root can be expressed as a power of 12\frac{1}{2}, so log(b)=log(b12)\log(\sqrt{b}) = \log(b^{\frac{1}{2}}). Using the power rule of logarithms, which states that log(xy)=ylog(x)\log(x^y) = y\cdot\log(x), we get: log(b12)=(12)log(b)\log(b^{\frac{1}{2}}) = (\frac{1}{2})\cdot\log(b) Since we know logb=10\log b = 10, we can substitute this value in: (\frac{\(1\)}{\(2\)})\cdot\log(b) = (\frac{\(1\)}{\(2\)})\cdot\(10 = 55
  3. Simplify log(a5c7)\log(a^{5}c^{7}): Next, we need to simplify log(a5c7)\log(a^{5}c^{7}). Using the product rule of logarithms, which states that log(xy)=log(x)+log(y)\log(xy) = \log(x) + \log(y), we can write: log(a5c7)=log(a5)+log(c7)\log(a^{5}c^{7}) = \log(a^{5}) + \log(c^{7}) Now we apply the power rule to both terms: log(a5)+log(c7)=5log(a)+7log(c)\log(a^{5}) + \log(c^{7}) = 5\cdot\log(a) + 7\cdot\log(c) Substituting the given values for loga\log a and logc\log c: 5log(a)+7log(c)=5(6)+77=30+49=195\cdot\log(a) + 7\cdot\log(c) = 5\cdot(-6) + 7\cdot7 = -30 + 49 = 19
  4. Perform Subtraction: Now we have the values for both parts of our original expression:\newlinelog(ba5c7)=log(b)log(a5c7)=519\log\left(\frac{\sqrt{b}}{a^{5}c^{7}}\right) = \log(\sqrt{b}) - \log(a^{5}c^{7}) = 5 - 19\newlineWe can now perform the subtraction:\newline519=145 - 19 = -14

More problems from Quotient property of logarithms