Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=-6quad log b=-9quad log c=-12],[log ((root(3)(b^(4)c^(7)))/(a^(4)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=6logb=9logc=12logb4c73a4 \begin{array}{c} \log a=-6 \quad \log b=-9 \quad \log c=-12 \\ \log \frac{\sqrt[3]{b^{4} c^{7}}}{a^{4}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=6logb=9logc=12logb4c73a4 \begin{array}{c} \log a=-6 \quad \log b=-9 \quad \log c=-12 \\ \log \frac{\sqrt[3]{b^{4} c^{7}}}{a^{4}} \end{array} \newlineAnswer:
  1. Understand Given Values: Understand the given logarithmic values and the expression to evaluate.\newlineWe are given:\newlineloga=6\log a = -6\newlinelogb=9\log b = -9\newlinelogc=12\log c = -12\newlineWe need to find the value of:\newlinelog(b4c73a4)\log \left(\frac{\sqrt[3]{b^{4}c^{7}}}{a^{4}}\right)\newlineLet's start by simplifying the expression using logarithmic rules.
  2. Apply Quotient Rule: Apply the quotient rule of logarithms to the expression.\newlineThe quotient rule states that log(xy)=log(x)log(y)\log(\frac{x}{y}) = \log(x) - \log(y).\newlineSo, log(b4c73a4)=log(b4c73)log(a4)\log \left(\frac{\sqrt[3]{b^{4}c^{7}}}{a^{4}}\right) = \log \left(\sqrt[3]{b^{4}c^{7}}\right) - \log \left(a^{4}\right)
  3. Apply Power Rule: Apply the power rule of logarithms to the expression.\newlineThe power rule states that log(x(n))=nlog(x)\log(x^{(n)}) = n \cdot \log(x).\newlineSo, log(a(4))=4log(a)\log (a^{(4)}) = 4 \cdot \log(a)\newlineSince we know log(a)=6\log(a) = -6, we can substitute to get:\newlinelog(a(4))=4(6)=24\log (a^{(4)}) = 4 \cdot (-6) = -24
  4. Apply Cube Root: Apply the cube root as a power of 1/31/3 to the logarithm.\newlineThe cube root of a number can be expressed as the number raised to the power of 1/31/3.\newlineSo, log(b4c73)=log((b4c7)1/3)\log (\sqrt[3]{b^{4}c^{7}}) = \log ((b^{4}c^{7})^{1/3})\newlineUsing the power rule again, we get:\newlinelog((b4c7)1/3)=(1/3)log(b4c7)\log ((b^{4}c^{7})^{1/3}) = (1/3) \cdot \log (b^{4}c^{7})
  5. Apply Product Rule: Apply the product rule of logarithms to the expression.\newlineThe product rule states that log(xy)=log(x)+log(y)\log(xy) = \log(x) + \log(y).\newlineSo, (13)log(b4c7)=(13)(log(b4)+log(c7))(\frac{1}{3}) \cdot \log (b^{4}c^{7}) = (\frac{1}{3}) \cdot (\log (b^{4}) + \log (c^{7}))
  6. Apply Power Rule: Apply the power rule to the individual logarithms.\newlineUsing the power rule again:\newlinelog(b4)=4×log(b)\log (b^{4}) = 4 \times \log(b)\newlinelog(c7)=7×log(c)\log (c^{7}) = 7 \times \log(c)\newlineSince we know log(b)=9\log(b) = -9 and log(c)=12\log(c) = -12, we can substitute to get:\newlinelog(b4)=4×(9)=36\log (b^{4}) = 4 \times (-9) = -36\newlinelog(c7)=7×(12)=84\log (c^{7}) = 7 \times (-12) = -84
  7. Substitute Values: Substitute the values back into the expression.\newlineNow we have:\newline(\frac{\(1\)}{\(3\)}) \times (\log (b^{\(4\)}) + \log (c^{\(7\)})) = (\frac{\(1\)}{\(3\)}) \times (\(-36 + (84-84))\newline= (\frac{11}{33}) \times (120-120)\newline= 40-40
  8. Combine Results: Combine the results to find the final value of the original expression.\newlineWe have:\newlinelog(b4c73a4)=log(b4c73)log(a4)\log \left(\frac{\sqrt[3]{b^{4}c^{7}}}{a^{4}}\right) = \log \left(\sqrt[3]{b^{4}c^{7}}\right) - \log \left(a^{4}\right)\newline=40(24)= -40 - (-24)\newline=40+24= -40 + 24\newline=16= -16

More problems from Quotient property of logarithms