Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=-5quad log b=8quad log c=3],[log ((c^(3))/(a^(9)b^(8)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=5logb=8logc=3logc3a9b8 \begin{array}{c} \log a=-5 \quad \log b=8 \quad \log c=3 \\ \log \frac{c^{3}}{a^{9} b^{8}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=5logb=8logc=3logc3a9b8 \begin{array}{c} \log a=-5 \quad \log b=8 \quad \log c=3 \\ \log \frac{c^{3}}{a^{9} b^{8}} \end{array} \newlineAnswer:
  1. Apply Rules of Logarithms: Apply the quotient and power rules of logarithms to the expression.\newlineThe quotient rule of logarithms states that log(MN)=log(M)log(N) \log\left(\frac{M}{N}\right) = \log(M) - \log(N) , and the power rule states that log(Mn)=nlog(M) \log(M^n) = n \cdot \log(M) .\newlineUsing these rules, we can expand log(c3a9b8) \log \left(\frac{c^3}{a^9b^8}\right) as follows:\newlinelog(c3a9b8)=log(c3)log(a9b8) \log \left(\frac{c^3}{a^9b^8}\right) = \log(c^3) - \log(a^9b^8) \newlineNow apply the power rule:\newlinelog(c3)=3log(c) \log(c^3) = 3 \cdot \log(c) \newlinelog(a9)=9log(a) \log(a^9) = 9 \cdot \log(a) \newlinelog(b8)=8log(b) \log(b^8) = 8 \cdot \log(b) \newlineSo, log(c3a9b8)=3log(c)(9log(a)+8log(b)) \log \left(\frac{c^3}{a^9b^8}\right) = 3 \cdot \log(c) - (9 \cdot \log(a) + 8 \cdot \log(b))
  2. Substitute Given Values: Substitute the given values of log(a) \log(a) , log(b) \log(b) , and log(c) \log(c) into the expanded expression.\newlineGiven:\newlinelog(a)=5 \log(a) = -5 \newlinelog(b)=8 \log(b) = 8 \newlinelog(c)=3 \log(c) = 3 \newlineSubstitute these values into the expression:\newline3log(c)(9log(a)+8log(b))=33(9(5)+88) 3 \cdot \log(c) - (9 \cdot \log(a) + 8 \cdot \log(b)) = 3 \cdot 3 - (9 \cdot (-5) + 8 \cdot 8)
  3. Perform Arithmetic Operations: Perform the arithmetic operations.\newlineCalculate the numerical values:\newline33(9(5)+88)=9(45+64) 3 \cdot 3 - (9 \cdot (-5) + 8 \cdot 8) = 9 - (-45 + 64) \newline9(45+64)=9(45+64) 9 - (-45 + 64) = 9 - (-45 + 64) \newline9(45+64)=9+4564 9 - (-45 + 64) = 9 + 45 - 64 \newline9+4564=5464 9 + 45 - 64 = 54 - 64 \newline5464=10 54 - 64 = -10

More problems from Quotient property of logarithms