Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=4quad log b=-8quad log c=-3],[log ((sqrt(a^(3)b^(5)))/(c^(5)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=4logb=8logc=3loga3b5c5 \begin{array}{c} \log a=4 \quad \log b=-8 \quad \log c=-3 \\ \log \frac{\sqrt{a^{3} b^{5}}}{c^{5}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=4logb=8logc=3loga3b5c5 \begin{array}{c} \log a=4 \quad \log b=-8 \quad \log c=-3 \\ \log \frac{\sqrt{a^{3} b^{5}}}{c^{5}} \end{array} \newlineAnswer:
  1. Identify Given Values: Identify the given logarithmic values and the expression to be evaluated.\newlineWe are given:\newlineloga=4\log a = 4\newlinelogb=8\log b = -8\newlinelogc=3\log c = -3\newlineWe need to find the value of log(a3b5c5)\log \left(\frac{\sqrt{a^{3}b^{5}}}{c^{5}}\right).
  2. Apply Logarithmic Properties: Apply the properties of logarithms to the expression.\newlineUsing the quotient rule of logarithms, which states that log(xy)=log(x)log(y)\log(\frac{x}{y}) = \log(x) - \log(y), we can write:\newlinelog(a3b5c5)=log(a3b5)log(c5)\log \left(\frac{\sqrt{a^{3}b^{5}}}{c^{5}}\right) = \log (\sqrt{a^{3}b^{5}}) - \log (c^{5})
  3. Apply Power Rule: Apply the power rule of logarithms to the expression inside the square root.\newlineThe power rule states that log(xk)=klog(x)\log(x^k) = k \cdot \log(x). Since we have a square root, which is equivalent to the power of 12\frac{1}{2}, we can write:\newlinelog(a3b5)=(12)log(a3b5)\log (\sqrt{a^{3}b^{5}}) = \left(\frac{1}{2}\right) \cdot \log (a^{3}b^{5})
  4. Apply Product Rule: Apply the product rule of logarithms to the expression inside the logarithm.\newlineThe product rule states that log(xy)=log(x)+log(y)\log(xy) = \log(x) + \log(y). Therefore:\newline(12)log(a3b5)=(12)(log(a3)+log(b5))(\frac{1}{2}) \cdot \log (a^{3}b^{5}) = (\frac{1}{2}) \cdot (\log (a^{3}) + \log (b^{5}))
  5. Apply Power Rule: Apply the power rule to the individual logarithms.\newlinelog(a3)=3log(a)\log (a^{3}) = 3 \cdot \log (a)\newlinelog(b5)=5log(b)\log (b^{5}) = 5 \cdot \log (b)\newlineSo, (1/2)(log(a3)+log(b5))=(1/2)(3log(a)+5log(b))(1/2) \cdot (\log (a^{3}) + \log (b^{5})) = (1/2) \cdot (3 \cdot \log (a) + 5 \cdot \log (b))
  6. Substitute Given Values: Substitute the given values of loga\log a and logb\log b into the expression.loga=4\log a = 4 and logb=8\log b = -8, so:12×(3×log(a)+5×log(b))=12×(3×4+5×(8))\frac{1}{2} \times (3 \times \log (a) + 5 \times \log (b)) = \frac{1}{2} \times (3 \times 4 + 5 \times (-8))
  7. Perform Arithmetic Operations: Perform the arithmetic operations.\newline(\frac{\(1\)}{\(2\)}) \times (\(3 \times 44 + 55 \times (8-8)) = (\frac{11}{22}) \times (1212 - 4040) = (\frac{11}{22}) \times (28-28) = 14-14
  8. Apply Power Rule: Apply the power rule to the logarithm of c5c^{5}. \newlinelog(c5)=5log(c)\log (c^{5}) = 5 \cdot \log (c)\newlineSubstitute the given value of logc\log c:\newline5log(c)=5(3)5 \cdot \log (c) = 5 \cdot (-3)
  9. Perform Arithmetic Operation: Perform the arithmetic operation for log(c5)\log (c^{5}).5×(3)=155 \times (-3) = -15
  10. Combine Results: Combine the results from Step 77 and Step 99 using the result from Step 22.\newlinelog(a3b5c5)=14(15)\log \left(\frac{\sqrt{a^{3}b^{5}}}{c^{5}}\right) = -14 - (-15)
  11. Perform Final Arithmetic: Perform the final arithmetic operation to find the numerical value.\newline14(15)=14+15=1-14 - (-15) = -14 + 15 = 1

More problems from Quotient property of logarithms