Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=-3quad log b=-11quad log c=8],[log ((root(3)(a))/(b^(4)c^(5)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=3logb=11logc=8loga3b4c5 \begin{array}{c} \log a=-3 \quad \log b=-11 \quad \log c=8 \\ \log \frac{\sqrt[3]{a}}{b^{4} c^{5}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=3logb=11logc=8loga3b4c5 \begin{array}{c} \log a=-3 \quad \log b=-11 \quad \log c=8 \\ \log \frac{\sqrt[3]{a}}{b^{4} c^{5}} \end{array} \newlineAnswer:
  1. Apply Properties of Logarithms: Let's start by applying the properties of logarithms to the expression log(a3b4c5) \log \left( \frac{\sqrt[3]{a}}{b^4 c^5} \right) .\newlineWe can use the quotient rule of logarithms, which states that log(xy)=log(x)log(y) \log \left( \frac{x}{y} \right) = \log(x) - \log(y) , and the power rule, which states that log(xk)=klog(x) \log(x^k) = k \cdot \log(x) .
  2. Apply Quotient Rule: First, apply the quotient rule to the given expression:\newlinelog(a3b4c5)=log(a3)log(b4c5) \log \left( \frac{\sqrt[3]{a}}{b^4 c^5} \right) = \log(\sqrt[3]{a}) - \log(b^4 c^5) .
  3. Apply Power Rule: Next, apply the power rule to the terms log(b4) \log(b^4) and log(c5) \log(c^5) :\newlinelog(a3)log(b4c5)=log(a3)(4log(b)+5log(c)) \log(\sqrt[3]{a}) - \log(b^4 c^5) = \log(\sqrt[3]{a}) - (4 \cdot \log(b) + 5 \cdot \log(c)) .
  4. Express as Power of a: Now, we need to express log(a3) \log(\sqrt[3]{a}) as a power of a a :\newlineSince a3=a1/3 \sqrt[3]{a} = a^{1/3} , we can write log(a3) \log(\sqrt[3]{a}) as 13log(a) \frac{1}{3} \cdot \log(a) .
  5. Substitute Given Values: Substitute the given values of log(a) \log(a) , log(b) \log(b) , and log(c) \log(c) into the expression:\newline13log(a)(4log(b)+5log(c))=13(3)(4(11)+58) \frac{1}{3} \cdot \log(a) - (4 \cdot \log(b) + 5 \cdot \log(c)) = \frac{1}{3} \cdot (-3) - (4 \cdot (-11) + 5 \cdot 8) .
  6. Perform Arithmetic Operations: Perform the arithmetic operations:\newline13(3)(4(11)+58)=1(44+40)=1(4)=1+4=3 \frac{1}{3} \cdot (-3) - (4 \cdot (-11) + 5 \cdot 8) = -1 - (-44 + 40) = -1 - (-4) = -1 + 4 = 3 .

More problems from Quotient property of logarithms