Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=3quad log b=9quad log c=-2],[log ((root(3)(a^(5)b^(5)))/(c^(6)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=3logb=9logc=2loga5b53c6 \begin{array}{c} \log a=3 \quad \log b=9 \quad \log c=-2 \\ \log \frac{\sqrt[3]{a^{5} b^{5}}}{c^{6}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=3logb=9logc=2loga5b53c6 \begin{array}{c} \log a=3 \quad \log b=9 \quad \log c=-2 \\ \log \frac{\sqrt[3]{a^{5} b^{5}}}{c^{6}} \end{array} \newlineAnswer:
  1. Apply Properties of Logarithms: Apply the properties of logarithms to the given expression.\newlineWe have the expression log(a5b53c6) \log \left( \frac{\sqrt[3]{a^5 b^5}}{c^6} \right) . We can use the quotient rule of logarithms, which states that log(AB)=log(A)log(B) \log \left( \frac{A}{B} \right) = \log(A) - \log(B) , and the power rule of logarithms, which states that log(An)=nlog(A) \log(A^n) = n \cdot \log(A) , to simplify this expression.
  2. Apply Quotient Rule: Apply the quotient rule to the expression.\newlineUsing the quotient rule, we get:\newlinelog(a5b53)log(c6) \log \left( \sqrt[3]{a^5 b^5} \right) - \log(c^6) .
  3. Apply Power Rule: Apply the power rule to the expression.\newlineThe cube root can be expressed as a power of 13 \frac{1}{3} , so we can rewrite the expression as:\newlinelog((a5b5)13)log(c6) \log \left( (a^5 b^5)^{\frac{1}{3}} \right) - \log(c^6) .\newlineNow, applying the power rule, we get:\newline13log(a5)+13log(b5)6log(c) \frac{1}{3} \log(a^5) + \frac{1}{3} \log(b^5) - 6 \log(c) .
  4. Apply Power Rule Again: Apply the power rule again to the individual logarithms.\newlineWe can further simplify the expression by applying the power rule to log(a5) \log(a^5) and log(b5) \log(b^5) :\newline53log(a)+53log(b)6log(c) \frac{5}{3} \log(a) + \frac{5}{3} \log(b) - 6 \log(c) .
  5. Substitute Given Values: Substitute the given values of log(a) \log(a) , log(b) \log(b) , and log(c) \log(c) into the expression.\newlineWe are given that log(a)=3 \log(a) = 3 , log(b)=9 \log(b) = 9 , and log(c)=2 \log(c) = -2 . Substituting these values, we get:\newline533+5396(2) \frac{5}{3} \cdot 3 + \frac{5}{3} \cdot 9 - 6 \cdot (-2) .
  6. Perform Arithmetic Operations: Perform the arithmetic operations.\newlineNow we calculate the numerical value:\newline533=5 \frac{5}{3} \cdot 3 = 5 ,\newline539=15 \frac{5}{3} \cdot 9 = 15 ,\newline6(2)=12 -6 \cdot (-2) = 12 .\newlineAdding these together, we get:\newline5+15+12=32 5 + 15 + 12 = 32 .

More problems from Quotient property of logarithms