Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=2quad log b=5quad log c=-8],[log ((b^(5))/(sqrt(a^(3)c^(5))))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=2logb=5logc=8logb5a3c5 \begin{array}{c} \log a=2 \quad \log b=5 \quad \log c=-8 \\ \log \frac{b^{5}}{\sqrt{a^{3} c^{5}}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=2logb=5logc=8logb5a3c5 \begin{array}{c} \log a=2 \quad \log b=5 \quad \log c=-8 \\ \log \frac{b^{5}}{\sqrt{a^{3} c^{5}}} \end{array} \newlineAnswer:
  1. Apply Quotient Rule: Let's start by expressing the given logarithm using the properties of logarithms.\newlineWe have the expression log(b5a3c5)\log\left(\frac{b^{5}}{\sqrt{a^{3}c^{5}}}\right).\newlineUsing the quotient rule of logarithms, which states that log(ab)=log(a)log(b)\log\left(\frac{a}{b}\right) = \log(a) - \log(b), we can separate the numerator and the denominator.
  2. Convert Square Root to Exponent: Now, we focus on the denominator, which contains a square root. The square root can be expressed as an exponent of 12\frac{1}{2}. So, a3c5\sqrt{a^{3}c^{5}} can be written as (a3c5)12(a^{3}c^{5})^{\frac{1}{2}}. Using the power rule of logarithms, which states that log(an)=nlog(a)\log(a^{n}) = n\log(a), we can take the exponent outside the logarithm.
  3. Apply Power Rule: Applying the power rule to both the numerator and the denominator, we get: log(b5)log((a3c5)12)\log(b^{5}) - \log((a^{3}c^{5})^{\frac{1}{2}}). This simplifies to 5log(b)(12)log(a3c5)5\log(b) - \left(\frac{1}{2}\right)\log(a^{3}c^{5}).
  4. Apply Product Rule: Next, we apply the product rule of logarithms, which states that log(ab)=log(a)+log(b)\log(a \cdot b) = \log(a) + \log(b), to the term log(a3c5)\log(a^{3}c^{5}). This gives us:\newline(12)(log(a3)+log(c5))(\frac{1}{2})\cdot(\log(a^{3}) + \log(c^{5})).
  5. Apply Power Rule Again: Now, we apply the power rule again to the terms log(a3)\log(a^{3}) and log(c5)\log(c^{5}), which gives us: (12)(3log(a)+5log(c))(\frac{1}{2})\cdot(3\cdot\log(a) + 5\cdot\log(c)).
  6. Substitute Given Values: Substituting the given values of loga\log a, logb\log b, and logc\log c into the expression, we get:\newline5log(b)(12)(3log(a)+5log(c))5\cdot\log(b) - \left(\frac{1}{2}\right)\cdot\left(3\cdot\log(a) + 5\cdot\log(c)\right) becomes 55(12)(32+5(8))5\cdot5 - \left(\frac{1}{2}\right)\cdot\left(3\cdot2 + 5\cdot(-8)\right).
  7. Perform Arithmetic Operations: Performing the arithmetic operations, we have: 25(12)(640)25 - (\frac{1}{2})*(6 - 40) which simplifies to 25(12)(34)25 - (\frac{1}{2})*(-34).
  8. Calculate Final Value: Finally, we calculate the value of the expression: 25(12)(34)=25(17)=25+17=4225 - (\frac{1}{2})*(-34) = 25 - (-17) = 25 + 17 = 42.

More problems from Quotient property of logarithms