Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=2quad log b=2quad log c=2],[log ((c^(7))/(a^(9)b^(5)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=2logb=2logc=2logc7a9b5 \begin{array}{c} \log a=2 \quad \log b=2 \quad \log c=2 \\ \log \frac{c^{7}}{a^{9} b^{5}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=2logb=2logc=2logc7a9b5 \begin{array}{c} \log a=2 \quad \log b=2 \quad \log c=2 \\ \log \frac{c^{7}}{a^{9} b^{5}} \end{array} \newlineAnswer:
  1. Apply Rules: Using the quotient and power rules of logarithms, we can expand the given expression.\newlineQuotient rule of logarithm: log(ab)=log(a)log(b)\log(\frac{a}{b}) = \log(a) - \log(b)\newlinePower rule of logarithm: log(an)=nlog(a)\log(a^n) = n \cdot \log(a)\newlineLet's apply these rules to the given expression log(c7a9b5)\log\left(\frac{c^{7}}{a^{9}b^{5}}\right).
  2. Separate Numerator and Denominator: First, apply the quotient rule to separate the logarithm of the numerator and the denominator:\newlinelog(c7a9b5)=log(c7)log(a9b5)\log\left(\frac{c^{7}}{a^{9}b^{5}}\right) = \log(c^{7}) - \log(a^{9}b^{5})
  3. Apply Product Rule: Next, apply the product rule to the logarithm in the denominator:\newlineProduct rule of logarithm: log(a×b)=log(a)+log(b)\log(a \times b) = \log(a) + \log(b)\newlinelog(a9b5)=log(a9)+log(b5)\log(a^{9}b^{5}) = \log(a^{9}) + \log(b^{5})
  4. Apply Power Rule: Now, apply the power rule to each logarithm:\newlinelog(c7)=7log(c)\log(c^{7}) = 7 \cdot \log(c)\newlinelog(a9)=9log(a)\log(a^{9}) = 9 \cdot \log(a)\newlinelog(b5)=5log(b)\log(b^{5}) = 5 \cdot \log(b)
  5. Substitute Given Values: Substitute the given values for loga\log a, logb\log b, and logc\log c into the expression:\newline7×log(c)(9×log(a)+5×log(b))7 \times \log(c) - (9 \times \log(a) + 5 \times \log(b))\newline7×2(9×2+5×2)7 \times 2 - (9 \times 2 + 5 \times 2)
  6. Perform Arithmetic Operations: Perform the arithmetic operations:\newline14(18+10)14 - (18 + 10)\newline142814 - 28
  7. Calculate Final Result: Calculate the final result: 1428=1414 - 28 = -14

More problems from Quotient property of logarithms