Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=10quad log b=7quad log c=-6],[log ((sqrtc)/(a^(4)b^(5)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=10logb=7logc=6logca4b5 \begin{array}{c} \log a=10 \quad \log b=7 \quad \log c=-6 \\ \log \frac{\sqrt{c}}{a^{4} b^{5}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=10logb=7logc=6logca4b5 \begin{array}{c} \log a=10 \quad \log b=7 \quad \log c=-6 \\ \log \frac{\sqrt{c}}{a^{4} b^{5}} \end{array} \newlineAnswer:
  1. Apply Quotient Rule: Let's start by expressing the given logarithm using the properties of logarithms.\newlineWe have the expression log(ca4b5)\log\left(\frac{\sqrt{c}}{a^{4}b^{5}}\right).\newlineUsing the quotient rule of logarithms, which states that log(ab)=log(a)log(b)\log\left(\frac{a}{b}\right) = \log(a) - \log(b), we can separate the numerator and the denominator.
  2. Expand Numerator and Denominator: Now, we apply the quotient rule to the given expression: log(ca4b5)=log(c)log(a4b5)\log\left(\frac{\sqrt{c}}{a^{4}b^{5}}\right) = \log(\sqrt{c}) - \log(a^{4}b^{5}).
  3. Simplify Using Rules: Next, we use the product rule of logarithms for the denominator, which states that log(ab)=log(a)+log(b)\log(a*b) = \log(a) + \log(b), and the power rule, which states that log(an)=nlog(a)\log(a^n) = n\cdot\log(a), to further expand the expression:\newlinelog(c)(log(a4)+log(b5))\log(\sqrt{c}) - (\log(a^{4}) + \log(b^{5})).
  4. Apply Power Rule: We can simplify the expression by applying the power rule to the terms log(a4)\log(a^{4}) and log(b5)\log(b^{5}), and recognizing that c\sqrt{c} is c12c^{\frac{1}{2}}:log(c12)(4log(a)+5log(b))\log(c^{\frac{1}{2}}) - (4\log(a) + 5\log(b)).
  5. Substitute Given Values: Now we apply the power rule to log(c12)\log(c^{\frac{1}{2}}), which gives us 12log(c)\frac{1}{2}\cdot\log(c):12log(c)(4log(a)+5log(b))\frac{1}{2}\cdot\log(c) - (4\cdot\log(a) + 5\cdot\log(b)).
  6. Perform Arithmetic Operations: We substitute the given values for log(a)\log(a), log(b)\log(b), and log(c)\log(c) into the expression:\newline(12)(6)(410+57)\left(\frac{1}{2}\right)*(-6) - (4*10 + 5*7).
  7. Combine Terms and Subtract: Perform the arithmetic operations: 3(40+35)-3 - (40 + 35).
  8. Get Numerical Value: Combine the terms inside the parentheses and then subtract from 3-3:375-3 - 75.
  9. Get Numerical Value: Combine the terms inside the parentheses and then subtract from 3-3:375-3 - 75.Finally, we get the numerical value of the expression:375=78-3 - 75 = -78.

More problems from Quotient property of logarithms