Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=1quad,log b=6quad log c=9],[log ((a^(4))/(root(3)(b^(7)c^(4))))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=1amp;logb=6logc=9loga4b7c43 \begin{array}{cc} \log a=1 \quad & \log b=6 \quad \log c=9 \\ \log \frac{a^{4}}{\sqrt[3]{b^{7} c^{4}}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=1logb=6logc=9loga4b7c43 \begin{array}{cc} \log a=1 \quad & \log b=6 \quad \log c=9 \\ \log \frac{a^{4}}{\sqrt[3]{b^{7} c^{4}}} \end{array} \newlineAnswer:
  1. Identify Given Values: Identify the given logarithmic values and the expression to be evaluated.\newlineWe are given loga=1\log a = 1, logb=6\log b = 6, and logc=9\log c = 9. We need to find the value of log(a4b7c43)\log \left(\frac{a^{4}}{\sqrt[3]{b^{7}c^{4}}}\right).
  2. Apply Power Rule: Apply the logarithm power rule to the numerator of the expression.\newlineThe power rule of logarithms states that log(an)=nlog(a)\log(a^n) = n \cdot \log(a). Therefore, log(a4)=4log(a)\log(a^{4}) = 4 \cdot \log(a).\newlineSince loga=1\log a = 1, we have log(a4)=41=4\log(a^{4}) = 4 \cdot 1 = 4.
  3. Apply Power Rule to Denominator: Apply the logarithm power rule to the denominator of the expression.\newlineWe have a cube root in the denominator, which can be written as a power of 13\frac{1}{3}. The expression inside the cube root is b7c4b^{7}c^{4}, which can be separated using the product rule of logarithms: log(b7c4)=log(b7)+log(c4)\log(b^{7}c^{4}) = \log(b^{7}) + \log(c^{4}).\newlineNow apply the power rule: log(b7)=7log(b)\log(b^{7}) = 7 \cdot \log(b) and log(c4)=4log(c)\log(c^{4}) = 4 \cdot \log(c).\newlineSince logb=6\log b = 6 and logc=9\log c = 9, we have log(b7)=76=42\log(b^{7}) = 7 \cdot 6 = 42 and log(c4)=49=36\log(c^{4}) = 4 \cdot 9 = 36.
  4. Combine Denominator Logarithms: Combine the logarithms of the denominator and apply the cube root.\newlineWe have log(b7)+log(c4)=42+36=78\log(b^{7}) + \log(c^{4}) = 42 + 36 = 78.\newlineNow, we need to apply the cube root, which is the same as multiplying by 1/31/3: (1/3)×log(b7c4)=(1/3)×78=26(1/3) \times \log(b^{7}c^{4}) = (1/3) \times 78 = 26.
  5. Use Quotient Rule: Use the quotient rule of logarithms to combine the numerator and denominator.\newlineThe quotient rule of logarithms states that log(ab)=log(a)log(b)\log(\frac{a}{b}) = \log(a) - \log(b). We have log(a4)log(b7c43)=426\log(a^{4}) - \log(\sqrt[3]{b^{7}c^{4}}) = 4 - 26.
  6. Calculate Final Value: Calculate the final numerical value.\newlineSubtract the value found for the denominator from the numerator: 426=224 - 26 = -22.

More problems from Quotient property of logarithms