Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=-10quad,log b=10quad log c=11],[,log ((sqrt(ab^(5)))/(c^(9)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=10amp;logb=10logc=11amp;logab5c9 \begin{array}{cc} \log a=-10 \quad & \log b=10 \quad \log c=11 \\ & \log \frac{\sqrt{a b^{5}}}{c^{9}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=10logb=10logc=11logab5c9 \begin{array}{cc} \log a=-10 \quad & \log b=10 \quad \log c=11 \\ & \log \frac{\sqrt{a b^{5}}}{c^{9}} \end{array} \newlineAnswer:
  1. Apply Properties of Logarithms: Apply the properties of logarithms to simplify the expression.\newlineWe have the expression log(ab5c9) \log \left( \frac{\sqrt{ab^5}}{c^9} \right) . We can use the quotient rule of logarithms, which states that log(AB)=log(A)log(B) \log \left( \frac{A}{B} \right) = \log(A) - \log(B) , and the power rule of logarithms, which states that log(An)=nlog(A) \log(A^n) = n \cdot \log(A) , to simplify this expression.
  2. Apply Quotient Rule: Apply the quotient rule to the given expression.\newlineUsing the quotient rule, we get:\newlinelog(ab5)log(c9) \log \left( \sqrt{ab^5} \right) - \log \left( c^9 \right) .
  3. Apply Power Rule: Apply the power rule to the terms inside the logarithms.\newlineThe square root can be written as a power of 12 \frac{1}{2} , and we have c9 c^9 , so we apply the power rule:\newlinelog((ab5)12)9log(c) \log \left( (ab^5)^{\frac{1}{2}} \right) - 9 \cdot \log(c) .
  4. Simplify First Term: Apply the power rule to the first term and simplify.\newline12log(ab5)9log(c) \frac{1}{2} \cdot \log(ab^5) - 9 \cdot \log(c) .
  5. Apply Product Rule: Apply the product rule to the first term.\newlineThe product rule states that log(AB)=log(A)+log(B) \log(A \cdot B) = \log(A) + \log(B) , so we get:\newline12(log(a)+log(b5))9log(c) \frac{1}{2} \cdot (\log(a) + \log(b^5)) - 9 \cdot \log(c) .
  6. Apply Power Rule to b^55: Apply the power rule to log(b5) \log(b^5) .\newline12(log(a)+5log(b))9log(c) \frac{1}{2} \cdot (\log(a) + 5 \cdot \log(b)) - 9 \cdot \log(c) .
  7. Distribute and Substitute Values: Distribute the 12 \frac{1}{2} and substitute the given values for log(a) \log(a) , log(b) \log(b) , and log(c) \log(c) .\newline12log(a)+52log(b)9log(c) \frac{1}{2} \cdot \log(a) + \frac{5}{2} \cdot \log(b) - 9 \cdot \log(c) .\newlineSubstituting the given values:\newline12(10)+5210911 \frac{1}{2} \cdot (-10) + \frac{5}{2} \cdot 10 - 9 \cdot 11 .
  8. Perform Arithmetic Operations: Perform the arithmetic operations.\newline5+2599 -5 + 25 - 99 .
  9. Combine Terms: Combine the terms to find the final numerical value.\newline5+2599=2099=79 -5 + 25 - 99 = 20 - 99 = -79 .

More problems from Quotient property of logarithms