Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=12quad log b=12quad log c=-6],[log ((a^(2))/(b^(9)c^(5)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=12logb=12logc=6loga2b9c5 \begin{array}{c} \log a=12 \quad \log b=12 \quad \log c=-6 \\ \log \frac{a^{2}}{b^{9} c^{5}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=12logb=12logc=6loga2b9c5 \begin{array}{c} \log a=12 \quad \log b=12 \quad \log c=-6 \\ \log \frac{a^{2}}{b^{9} c^{5}} \end{array} \newlineAnswer:
  1. Apply Power Rule: Using the given values for loga\log a, logb\log b, and logc\log c, we need to apply the properties of logarithms to find the value of log(a2b9c5)\log\left(\frac{a^{2}}{b^{9}c^{5}}\right). First, we apply the power rule of logarithms, which states that log(an)=nlog(a)\log(a^n) = n \cdot \log(a), to each term inside the logarithm.
  2. Rewrite Expression: We rewrite the expression using the power rule:\newline\log\left(\frac{a^{2}}{b^{9}c^{5}}\right) = \log(a^{2}) - \log(b^{9}) - \log(c^{5})\(\newline= 2 \cdot \log(a) - 9 \cdot \log(b) - 5 \cdot \log(c)\)
  3. Substitute Given Values: Now we substitute the given values of loga\log a, logb\log b, and logc\log c into the expression:\newline= 2×129×125×(6)2 \times 12 - 9 \times 12 - 5 \times (-6)
  4. Perform Arithmetic Operations: We perform the arithmetic operations:\newline=24108+30= 24 - 108 + 30
  5. Find Value of Expression: Finally, we add and subtract the numbers to find the value of the expression:\newline=84+30= -84 + 30\newline=54= -54

More problems from Quotient property of logarithms