Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=11quad log b=-7quad log c=-12],[log ((root(3)(c))/(a^(9)b^(6)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=11logb=7logc=12logc3a9b6 \begin{array}{c} \log a=11 \quad \log b=-7 \quad \log c=-12 \\ \log \frac{\sqrt[3]{c}}{a^{9} b^{6}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=11logb=7logc=12logc3a9b6 \begin{array}{c} \log a=11 \quad \log b=-7 \quad \log c=-12 \\ \log \frac{\sqrt[3]{c}}{a^{9} b^{6}} \end{array} \newlineAnswer:
  1. Given Log Values: We are given the values of loga=11 \log a = 11 , logb=7 \log b = -7 , and logc=12 \log c = -12 . We need to find the value of log(c3a9b6) \log \left( \frac{\sqrt[3]{c}}{a^{9}b^{6}} \right) .\newlineFirst, let's apply the logarithm rules to simplify the expression.\newlineUsing the quotient rule of logarithms, which states that log(xy)=logxlogy \log \left( \frac{x}{y} \right) = \log x - \log y , we can write:\newlinelog(c3a9b6)=log(c3)log(a9b6) \log \left( \frac{\sqrt[3]{c}}{a^{9}b^{6}} \right) = \log \left( \sqrt[3]{c} \right) - \log \left( a^{9}b^{6} \right) .
  2. Simplify Expression: Next, we apply the power rule of logarithms, which states that log(xn)=nlogx \log \left( x^{n} \right) = n \cdot \log x , to the terms a9 a^{9} and b6 b^{6} :\newlinelog(a9)=9loga \log \left( a^{9} \right) = 9 \cdot \log a and log(b6)=6logb \log \left( b^{6} \right) = 6 \cdot \log b .\newlineWe also apply the same rule to c3 \sqrt[3]{c} , which can be written as c1/3 c^{1/3} , so log(c3)=13logc \log \left( \sqrt[3]{c} \right) = \frac{1}{3} \cdot \log c .
  3. Apply Log Rules: Now, we substitute the given logarithm values into the expression:\newlinelog(c3)log(a9b6) \log \left( \sqrt[3]{c} \right) - \log \left( a^{9}b^{6} \right) becomes 13logc(9loga+6logb) \frac{1}{3} \cdot \log c - (9 \cdot \log a + 6 \cdot \log b) .\newlineSubstituting the values, we get 13(12)(911+6(7)) \frac{1}{3} \cdot (-12) - (9 \cdot 11 + 6 \cdot (-7)) .
  4. Substitute Values: Let's perform the calculations:\newline13(12)=4 \frac{1}{3} \cdot (-12) = -4 ,\newline911=99 9 \cdot 11 = 99 ,\newlineand 6(7)=42 6 \cdot (-7) = -42 .\newlineSo, the expression becomes 4(9942) -4 - (99 - 42) .
  5. Perform Calculations: Finally, we calculate the remaining operation:\newline4(9942)=499+42=457=61 -4 - (99 - 42) = -4 - 99 + 42 = -4 - 57 = -61 .\newlineTherefore, the numerical value of the log expression is 61 -61 .

More problems from Quotient property of logarithms