Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the complex conjugate 
bar(z_(1)) of 
z_(1)=-2+8i.

bar(z_(1))=◻

Find the complex conjugate z1 \overline{z_{1}} of z1=2+8i z_{1}=-2+8 i .\newlinez1= \overline{z_{1}}=\square

Full solution

Q. Find the complex conjugate z1 \overline{z_{1}} of z1=2+8i z_{1}=-2+8 i .\newlinez1= \overline{z_{1}}=\square
  1. Identify Real and Imaginary Parts: Identify the real and imaginary parts of the complex number z1=2+8iz_{1} = -2 + 8i.\newlineReal part: 2-2\newlineImaginary part: 88
  2. Find Complex Conjugate: Determine the complex conjugate of z1=2+8iz_{1} = -2 + 8i. The complex conjugate of a complex number a+bia + bi is abia - bi. Therefore, the complex conjugate of 2+8i-2 + 8i is 28i-2 - 8i.

More problems from Complex conjugates