Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the area of a regular hexagon with side length 1818 inches.

Full solution

Q. Find the area of a regular hexagon with side length 1818 inches.
  1. Understand the formula: Understand the formula for the area of a regular hexagon.\newlineThe area AA of a regular hexagon can be calculated using the formula:\newlineA=332s2A = \frac{3\sqrt{3}}{2} \cdot s^2\newlinewhere ss is the length of a side of the hexagon.
  2. Plug side length: Plug the given side length into the formula.\newlineGiven that the side length ss is 1818 inches, we can substitute this value into the formula:\newlineA=(332)×182A = \left(\frac{3\sqrt{3}}{2}\right) \times 18^2
  3. Calculate the area: Calculate the area.\newlineFirst, square the side length:\newline182=32418^2 = 324\newlineThen, multiply by the constant (33/2)(3\sqrt{3}/2):\newlineA=(33/2)×324A = (3\sqrt{3}/2) \times 324
  4. Simplify the calculation: Simplify the calculation.\newlineTo simplify the calculation, we can first multiply 324324 by 33:\newline324×3=972324 \times 3 = 972\newlineNow, divide by 22:\newline972/2=486972 / 2 = 486\newlineFinally, multiply by 3\sqrt{3}:\newlineA=486×3A = 486 \times \sqrt{3}
  5. Calculate final value: Calculate the final value.\newlineTo get the exact area, we can leave the answer in terms of 3\sqrt{3}:\newlineA=4863A = 486\sqrt{3} square inches\newlineIf a decimal approximation is needed, we can use the approximate value of 3\sqrt{3}, which is about 11.732732:\newlineA486×1.732A \approx 486 \times 1.732\newlineA842.352A \approx 842.352

More problems from Solve proportions: word problems