Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find P_(3) for f(x)=ln x centered at c=2.

Find P3 P_{3} for f(x)=lnx f(x)=\ln x centered at c=2. c=2.

Full solution

Q. Find P3 P_{3} for f(x)=lnx f(x)=\ln x centered at c=2. c=2.
  1. Identify Function & Expansion Point: Identify the function and the point of expansion.\newlineWe are given the function f(x)=ln(x)f(x) = \ln(x) and we need to find the third-degree Taylor polynomial (P3P_3) centered at c=2c = 2.
  2. Calculate First Derivative: Calculate the first derivative of f(x)f(x). The first derivative of f(x)=ln(x)f(x) = \ln(x) is f(x)=1xf'(x) = \frac{1}{x}. We evaluate this at x=2x = 2 to get f(2)=12f'(2) = \frac{1}{2}.
  3. Calculate Second Derivative: Calculate the second derivative of f(x)f(x).\newlineThe second derivative of f(x)=1xf'(x) = \frac{1}{x} is f(x)=1x2f''(x) = -\frac{1}{x^2}. We evaluate this at x=2x = 2 to get f(2)=14f''(2) = -\frac{1}{4}.
  4. Calculate Third Derivative: Calculate the third derivative of f(x)f(x). The third derivative of f(x)=1x2f''(x) = -\frac{1}{x^2} is f(x)=2x3f(x) = \frac{2}{x^3}. We evaluate this at x=2x = 2 to get f(2)=28=14f(2) = \frac{2}{8} = \frac{1}{4}.
  5. Write Taylor Polynomial Formula: Write down the formula for the third-degree Taylor polynomial.\newlineThe third-degree Taylor polynomial is given by:\newlineP3(x)=f(c)+f(c)(xc)+f(c)(xc)22!+f(c)(xc)33!P_3(x) = f(c) + f'(c)(x - c) + \frac{f''(c)(x - c)^2}{2!} + \frac{f(c)(x - c)^3}{3!}
  6. Substitute Values: Substitute the values into the Taylor polynomial formula.\newlineUsing the values from the previous steps, we get:\newlineP3(x)=ln(2)+(12)(x2)(14)(x2)22!+(14)(x2)33!P_3(x) = \ln(2) + \left(\frac{1}{2}\right)(x - 2) - \left(\frac{1}{4}\right)\frac{(x - 2)^2}{2!} + \left(\frac{1}{4}\right)\frac{(x - 2)^3}{3!}
  7. Simplify Polynomial: Simplify the polynomial. \newlineP3(x)=ln(2)+(12)(x2)(18)(x2)2+(124)(x2)3P_3(x) = \ln(2) + \left(\frac{1}{2}\right)(x - 2) - \left(\frac{1}{8}\right)(x - 2)^2 + \left(\frac{1}{24}\right)(x - 2)^3\newlineThis is the third-degree Taylor polynomial for f(x)=ln(x)f(x) = \ln(x) centered at c=2c = 2.

More problems from Find values of derivatives using limits