Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr5)(x+2)/(x^(2)-5).
Choose 1 answer:
(A) 
-(3)/(25)
(B) 
(7)/(20)
(c) 
-(7)/(25)
(D) The limit doesn't exist

Find limx5x+2x25 \lim _{x \rightarrow 5} \frac{x+2}{x^{2}-5} .\newlineChoose 11 answer:\newline(A) 325 -\frac{3}{25} \newline(B) 720 \frac{7}{20} \newline(C) 725 -\frac{7}{25} \newline(D) The limit doesn't exist

Full solution

Q. Find limx5x+2x25 \lim _{x \rightarrow 5} \frac{x+2}{x^{2}-5} .\newlineChoose 11 answer:\newline(A) 325 -\frac{3}{25} \newline(B) 720 \frac{7}{20} \newline(C) 725 -\frac{7}{25} \newline(D) The limit doesn't exist
  1. Substitute xx with 55: Substitute the value of xx with 55 in the denominator to check if the limit can be directly calculated.\newline(5+2)/(525)=7/(255)=7/20(5+2)/(5^2-5) = 7/(25-5) = 7/20
  2. Check if limit can be directly calculated: Since the denominator 5255^2 - 5 does not equal zero, we can directly substitute xx with 55 in the numerator as well.\newlineThe limit as xx approaches 55 for the function (x+2)/(x25)(x+2)/(x^2-5) is therefore 7/207/20.
  3. Substitute xx with 55 in numerator: Choose the correct option based on the calculation.\newlineThe correct choice is (B) 720\frac{7}{20}.