Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr3)f(x) for

f(x)=(x^(2)-4)/(11-2x)

Find limx3f(x) \lim _{x \rightarrow 3} f(x) for\newlinef(x)=x24112x f(x)=\frac{x^{2}-4}{11-2 x} \text {. }

Full solution

Q. Find limx3f(x) \lim _{x \rightarrow 3} f(x) for\newlinef(x)=x24112x f(x)=\frac{x^{2}-4}{11-2 x} \text {. }
  1. Identify function and point: Identify the function and the point at which we need to find the limit. We are given f(x)=x24112xf(x) = \frac{x^2 - 4}{11 - 2x} and we need to find the limit as xx approaches 33.
  2. Substitute xx with 33: Substitute xx with 33 in the function to check if the function is defined at that point.\newlinef(3)=((3)24)/(112(3))f(3) = ((3)^2 - 4) / (11 - 2(3))\newlinef(3)=(94)/(116)f(3) = (9 - 4) / (11 - 6)\newlinef(3)=5/5f(3) = 5 / 5\newlinef(3)=1f(3) = 1\newlineSince we get a defined value, there is no need for further simplification, and the limit as xx approaches 33 is simply the value of the function at 3300.

More problems from Evaluate exponential functions