Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr oo)(5x^(4)+x^(2))/(2x^(4)-x^(3)-4).
Choose 1 answer:
(A) 
(5)/(2)
(B) 0
(c) 
-(1)/(4)
(D) The limit is unbounded

Find limx5x4+x22x4x34 \lim _{x \rightarrow \infty} \frac{5 x^{4}+x^{2}}{2 x^{4}-x^{3}-4} .\newlineChoose 11 answer:\newline(A) 52 \frac{5}{2} \newline(B) 00\newline(C) 14 -\frac{1}{4} \newline(D) The limit is unbounded

Full solution

Q. Find limx5x4+x22x4x34 \lim _{x \rightarrow \infty} \frac{5 x^{4}+x^{2}}{2 x^{4}-x^{3}-4} .\newlineChoose 11 answer:\newline(A) 52 \frac{5}{2} \newline(B) 00\newline(C) 14 -\frac{1}{4} \newline(D) The limit is unbounded
  1. Divide by highest power of x: To find the limit of the given function as x approaches infinity, we can divide the numerator and the denominator by the highest power of x present in the function, which is x4 x^4 .\newlinelimx5x4+x22x4x34=limx5x4x4+x2x42x4x4x3x44x4 \lim_{x \to \infty} \frac{5x^4 + x^2}{2x^4 - x^3 - 4} = \lim_{x \to \infty} \frac{\frac{5x^4}{x^4} + \frac{x^2}{x^4}}{\frac{2x^4}{x^4} - \frac{x^3}{x^4} - \frac{4}{x^4}}
  2. Simplify expression: Now we simplify the expression by canceling out the x4 x^4 terms and reducing the other terms by their respective powers of x.\newlinelimx5+1x221x4x4 \lim_{x \to \infty} \frac{5 + \frac{1}{x^2}}{2 - \frac{1}{x} - \frac{4}{x^4}}
  3. Remove terms with x in denominator: As x approaches infinity, the terms with x x in the denominator will approach zero. Therefore, we can simplify the expression further by removing those terms.\newlinelimx5+0200=52 \lim_{x \to \infty} \frac{5 + 0}{2 - 0 - 0} = \frac{5}{2}
  4. Evaluate the limit: The limit of the function as x approaches infinity is 52 \frac{5}{2} . This corresponds to answer choice (A).

More problems from Add, subtract, multiply, and divide polynomials