Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr oo)(-4x^(3)+5x)/(2x^(3)+7).
Choose 1 answer:
(A) 
(5)/(7)
(B) -2
(c) 0
(D) The limit is unbounded

Find limx4x3+5x2x3+7 \lim _{x \rightarrow \infty} \frac{-4 x^{3}+5 x}{2 x^{3}+7} .\newlineChoose 11 answer:\newline(A) 57 \frac{5}{7} \newline(B) 2-2\newline(C) 00\newline(D) The limit is unbounded

Full solution

Q. Find limx4x3+5x2x3+7 \lim _{x \rightarrow \infty} \frac{-4 x^{3}+5 x}{2 x^{3}+7} .\newlineChoose 11 answer:\newline(A) 57 \frac{5}{7} \newline(B) 2-2\newline(C) 00\newline(D) The limit is unbounded
  1. Step 11: Divide by highest power of xx: To find the limit of the given function as xx approaches infinity, we can divide the numerator and the denominator by the highest power of xx present in the function, which is x3x^3 in this case.
  2. Step 22: Simplify by canceling out x3x^3 terms: Divide each term in the numerator and the denominator by x3x^3:limx(4x3/x32x3/x3+5x/x37/x3)\lim_{x \rightarrow \infty}\left(\frac{-4x^{3}/x^{3}}{2x^{3}/x^{3}}+\frac{5x/x^{3}}{7/x^{3}}\right).
  3. Step 33: Evaluate terms with x in the denominator: Simplify the expression by canceling out the x3x^3 terms:\newlinelimx(4+5x22+7x3).\lim_{x \rightarrow \infty}\left(\frac{-4+\frac{5}{x^2}}{2+\frac{7}{x^3}}\right).
  4. Step 44: Simplify the expression: As xx approaches infinity, the terms with xx in the denominator (5x2\frac{5}{x^2} and 7x3\frac{7}{x^3}) approach 00:limx(4)+0(2)+0.\lim_{x \rightarrow \infty}\frac{(-4)+0}{(2)+0}.
  5. Step 55: Calculate the limit: The expression simplifies to: limx(42)\lim_{x \rightarrow \infty}\left(\frac{-4}{2}\right).
  6. Step 55: Calculate the limit: The expression simplifies to: limx(42)\lim_{x \rightarrow \infty}\left(\frac{-4}{2}\right).Calculate the simplified limit: limx(42)=2\lim_{x \rightarrow \infty}\left(\frac{-4}{2}\right) = -2.

More problems from Add, subtract, multiply, and divide polynomials