Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr-5)((x+1)^(2))/(8-x).
Choose 1 answer:
(A) 
(16)/(13)
(B) 2
(c) 12
(D) The limit doesn't exist

Find limx5(x+1)28x \lim _{x \rightarrow-5} \frac{(x+1)^{2}}{8-x} .\newlineChoose 11 answer:\newline(A) 1613 \frac{16}{13} \newline(B) 22\newline(C) 1212\newline(D) The limit doesn't exist

Full solution

Q. Find limx5(x+1)28x \lim _{x \rightarrow-5} \frac{(x+1)^{2}}{8-x} .\newlineChoose 11 answer:\newline(A) 1613 \frac{16}{13} \newline(B) 22\newline(C) 1212\newline(D) The limit doesn't exist
  1. Substitute xx approaching 5-5: Substitute the value of xx approaching 5-5 into the function to see if it results in an indeterminate form.\newlinelimx5(x+1)28x\lim_{x \to -5} \frac{(x+1)^{2}}{8-x}\newline=(5+1)28(5)= \frac{(-5+1)^{2}}{8-(-5)}\newline=(4)28+5= \frac{(4)^{2}}{8+5}\newline=16/13= 16/13

More problems from Evaluate exponential functions