Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr-1)(x^(2)-9)/(x^(2)+1).
Choose 1 answer:
(A) -4
(B) -5
(c) -9
(D) The limit doesn't exist

Find limx1x29x2+1 \lim _{x \rightarrow-1} \frac{x^{2}-9}{x^{2}+1} .\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 5-5\newline(C) 9-9\newline(D) The limit doesn't exist

Full solution

Q. Find limx1x29x2+1 \lim _{x \rightarrow-1} \frac{x^{2}-9}{x^{2}+1} .\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 5-5\newline(C) 9-9\newline(D) The limit doesn't exist
  1. Identify the function and point: Identify the function and the point at which we need to find the limit. The function given is (x29)/(x2+1)(x^2 - 9)/(x^2 + 1), and we need to find the limit as xx approaches 1-1.
  2. Substitute value into function: Substitute the value of xx into the function to see if the function is defined at that point.limx1x29x2+1=(1)29(1)2+1\lim_{x \to -1}\frac{x^2 - 9}{x^2 + 1} = \frac{(-1)^2 - 9}{(-1)^2 + 1}
  3. Perform the calculations: Perform the calculations.\newline((1)29)/((1)2+1)=(19)/(1+1)=(8)/2=4((-1)^2 - 9)/((-1)^2 + 1) = (1 - 9)/(1 + 1) = (-8)/2 = -4
  4. Conclude the limit: Conclude the limit.\newlineSince we were able to directly substitute x=1x = -1 into the function and get a real number result, the limit exists and is equal to 4-4.

More problems from Evaluate an exponential function