Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find g(x)g(x), where g(x)g(x) is the translation 33 units up of f(x)=xf(x) = x. Write your answer in the form mx+bmx + b, where mm and bb are integers.

Full solution

Q. Find g(x)g(x), where g(x)g(x) is the translation 33 units up of f(x)=xf(x) = x. Write your answer in the form mx+bmx + b, where mm and bb are integers.
  1. Identify g(x)g(x): Identify g(x)g(x) when translating 33 units up of f(x)f(x). Transformation rule: g(x)=f(x)+kg(x) = f(x) + k
  2. Substitute 33 for kk: Substitute 33 for kk in g(x)=f(x)+kg(x) = f(x) + k. \newlineg(x)=f(x)+3g(x) = f(x) + 3
  3. We have: We have: f(x)=xf(x) = x \newlineg(x)=f(x)+3g(x) = f(x) + 3
  4. Substitute xx for f(x)f(x): Substitute xx for f(x)f(x) in g(x)=f(x)+3g(x) = f(x) + 3. g(x)=x+3g(x) = x + 3

More problems from Transformations of linear functions