Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find g(x)g(x), where g(x)g(x) is the translation 1010 units up of f(x)=xf(x) = x. Write your answer in the form mx+bmx + b, where mm and bb are integers.

Full solution

Q. Find g(x)g(x), where g(x)g(x) is the translation 1010 units up of f(x)=xf(x) = x. Write your answer in the form mx+bmx + b, where mm and bb are integers.
  1. Identify g(x)g(x): Identify g(x)g(x) when translating kk units up of f(x)f(x). Transformation rule: g(x)=f(x)+kg(x) = f(x) + k
  2. Translate 1010 units up: Identify g(x)g(x) when translating 1010 units up of f(x)f(x). Substitute 1010 for kk in g(x)=f(x)+kg(x) = f(x) + k. g(x)=f(x)+10g(x) = f(x) + 10
  3. Write function g(x)g(x): We have:
    f(x)=xf(x) = x
    g(x)=f(x)+10g(x) = f(x) + 10
    Write the function g(x)g(x).
    Substitute xx for f(x)f(x) in g(x)=f(x)+10g(x) = f(x) + 10.
    g(x)=x+10g(x) = x + 10

More problems from Transformations of linear functions