Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find g(x)g(x), where g(x)g(x) is the translation 11 unit up of f(x)=xf(x) = x. Write your answer in the form mx+bmx + b, where mm and bb are integers.

Full solution

Q. Find g(x)g(x), where g(x)g(x) is the translation 11 unit up of f(x)=xf(x) = x. Write your answer in the form mx+bmx + b, where mm and bb are integers.
  1. Identify g(x)g(x) translation: Identify g(x)g(x) when translating kk units up of f(x)f(x). Transformation rule: g(x)=f(x)+kg(x) = f(x) + k
  2. Substitute kk in g(x)g(x): Identify g(x)g(x) when translating 11 unit up of f(x)f(x). Substitute 11 for kk in g(x)=f(x)+kg(x) = f(x) + k. g(x)=f(x)+1g(x) = f(x) + 1
  3. Write function g(x)g(x): We have: f(x)=xf(x) = x g(x)=f(x)+1g(x) = f(x) + 1 Write the function g(x)g(x). Substitute xx for f(x)f(x) in g(x)=f(x)+1g(x) = f(x) + 1. g(x)=x+1g(x) = x + 1

More problems from Transformations of linear functions