Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
(dy)/(dx) where 
y=sin^(-1)((1)/(2x+5))

Find dydx \frac{d y}{d x} where y=sin1(12x+5) y=\sin ^{-1}\left(\frac{1}{2 x+5}\right)

Full solution

Q. Find dydx \frac{d y}{d x} where y=sin1(12x+5) y=\sin ^{-1}\left(\frac{1}{2 x+5}\right)
  1. Define Function: We are given the function y=sin1(12x+5)y = \sin^{-1}\left(\frac{1}{2x+5}\right). To find the derivative dydx\frac{dy}{dx}, we will use the chain rule and the derivative of the inverse sine function.\newlineThe derivative of sin1(u)\sin^{-1}(u) with respect to uu is 11u2\frac{1}{\sqrt{1-u^2}}, where uu is a function of xx.\newlineLet u=12x+5u = \frac{1}{2x+5}, then dudx=2(2x+5)2\frac{du}{dx} = -\frac{2}{(2x+5)^2}.
  2. Apply Chain Rule: Now we apply the chain rule to find dydx\frac{dy}{dx}. The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.\newlineSo, dydx=ddx(sin1(u))dudx\frac{dy}{dx} = \frac{d}{dx}(\sin^{-1}(u)) \cdot \frac{du}{dx}.
  3. Substitute Derivatives: Substitute the derivative of sin1(u)\sin^{-1}(u) and dudx\frac{du}{dx} into the chain rule expression.\newlinedydx=11u2(2(2x+5)2).\frac{dy}{dx} = \frac{1}{\sqrt{1-u^2}} \cdot \left(-\frac{2}{(2x+5)^2}\right).
  4. Simplify Square Root: Now we substitute uu back into the expression to get the derivative in terms of xx.dydx=(11(12x+5)2)(2(2x+5)2).\frac{dy}{dx} = \left(\frac{1}{\sqrt{1-\left(\frac{1}{2x+5}\right)^2}}\right) * \left(-\frac{2}{(2x+5)^2}\right).
  5. Write Full Expression: Simplify the expression inside the square root. \newline1(12x+5)2=114x2+20x+25=4x2+20x+2514x2+20x+25=4x2+20x+244x2+20x+251-\left(\frac{1}{2x+5}\right)^2 = 1 - \frac{1}{4x^2+20x+25} = \frac{4x^2+20x+25 - 1}{4x^2+20x+25} = \frac{4x^2+20x+24}{4x^2+20x+25}.
  6. Combine Terms: Now we can write the full expression for dydx\frac{dy}{dx}.dydx=(14x2+20x+244x2+20x+25)(2(2x+5)2).\frac{dy}{dx} = \left(\frac{1}{\sqrt{\frac{4x^2+20x+24}{4x^2+20x+25}}}\right) * \left(-\frac{2}{(2x+5)^2}\right).
  7. Final Simplified Expression: Simplify the square root by combining the terms. (4x2+20x+244x2+20x+25)=1(14x2+20x+25).\sqrt{\left(\frac{4x^2+20x+24}{4x^2+20x+25}\right)} = \sqrt{1 - \left(\frac{1}{4x^2+20x+25}\right)}.
  8. Final Simplified Expression: Simplify the square root by combining the terms. 4x2+20x+244x2+20x+25=114x2+20x+25\sqrt{\frac{4x^2+20x+24}{4x^2+20x+25}} = \sqrt{1 - \frac{1}{4x^2+20x+25}}. Now we can write the final simplified expression for dydx\frac{dy}{dx}. dydx=2(2x+5)2/114x2+20x+25\frac{dy}{dx} = \frac{-2}{(2x+5)^2} / \sqrt{1 - \frac{1}{4x^2+20x+25}}.

More problems from Evaluate expression when two complex numbers are given