Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Felix was asked whether the following equation is an identity:

(x^(2)+1)^(2)=(x^(2)-1)^(2)+(2x)^(2)
He performed the following steps:

(x^(2)+1)^(2)

rarr"" Step "1"=x^(4)+x^(2)+x^(2)+1

rarr"" Step "^(2)"=x^(4)+2x^(2)+1

rarr"" Step ""^(3)=x^(4)+2x^(2)+1-2x^(2)+2x^(2)

^(" Step ")^(4)=(x^(4)-2x^(2)+1)+4x^(2)

rarr"" Step "^(5)"=(x^(2)-1)^(2)+(2x)^(2)
For this reason, Felix stated that the equation is a true identity.
Is Felix correct? If not, in which step did he make a mistake?
Choose 1 answer:
(A) Felix is correct.
(B) Felix is incorrect. He made a mistake in step 1.
(C) Felix is incorrect. He made a mistake in step 3.
(D) Felix is incorrect. He made a mistake in step 5.

Felix was asked whether the following equation is an identity:\newline(x2+1)2=(x21)2+(2x)2 \left(x^{2}+1\right)^{2}=\left(x^{2}-1\right)^{2}+(2 x)^{2} \newlineHe performed the following steps:\newline(x2+1)2 \left(x^{2}+1\right)^{2} \newline Step 1=x4+x2+x2+1 \stackrel{\text { Step } 1}{\hookrightarrow}=x^{4}+x^{2}+x^{2}+1 \newline Step 2=x4+2x2+1 \stackrel{\text { Step } 2}{\hookrightarrow}=x^{4}+2 x^{2}+1 \newline Step 3=x4+2x2+12x2+2x2 \stackrel{\text { Step } 3}{\hookrightarrow}=x^{4}+2 x^{2}+1-2 x^{2}+2 x^{2} \newline Step 4=(x42x2+1)+4x2 \stackrel{\text { Step } 4}{\hookrightarrow}=\left(x^{4}-2 x^{2}+1\right)+4 x^{2} \newline Step 5=(x21)2+(2x)2 \stackrel{\text { Step } 5}{\hookrightarrow}=\left(x^{2}-1\right)^{2}+(2 x)^{2} \newlineFor this reason, Felix stated that the equation is a true identity.\newlineIs Felix correct? If not, in which step did he make a mistake?\newlineChoose 11 answer:\newline(A) Felix is correct.\newline(B) Felix is incorrect. He made a mistake in step 11.\newline(C) Felix is incorrect. He made a mistake in step 33.\newline(D) Felix is incorrect. He made a mistake in step 55.

Full solution

Q. Felix was asked whether the following equation is an identity:\newline(x2+1)2=(x21)2+(2x)2 \left(x^{2}+1\right)^{2}=\left(x^{2}-1\right)^{2}+(2 x)^{2} \newlineHe performed the following steps:\newline(x2+1)2 \left(x^{2}+1\right)^{2} \newline Step 1=x4+x2+x2+1 \stackrel{\text { Step } 1}{\hookrightarrow}=x^{4}+x^{2}+x^{2}+1 \newline Step 2=x4+2x2+1 \stackrel{\text { Step } 2}{\hookrightarrow}=x^{4}+2 x^{2}+1 \newline Step 3=x4+2x2+12x2+2x2 \stackrel{\text { Step } 3}{\hookrightarrow}=x^{4}+2 x^{2}+1-2 x^{2}+2 x^{2} \newline Step 4=(x42x2+1)+4x2 \stackrel{\text { Step } 4}{\hookrightarrow}=\left(x^{4}-2 x^{2}+1\right)+4 x^{2} \newline Step 5=(x21)2+(2x)2 \stackrel{\text { Step } 5}{\hookrightarrow}=\left(x^{2}-1\right)^{2}+(2 x)^{2} \newlineFor this reason, Felix stated that the equation is a true identity.\newlineIs Felix correct? If not, in which step did he make a mistake?\newlineChoose 11 answer:\newline(A) Felix is correct.\newline(B) Felix is incorrect. He made a mistake in step 11.\newline(C) Felix is incorrect. He made a mistake in step 33.\newline(D) Felix is incorrect. He made a mistake in step 55.
  1. Expand Left Side: Expand the left side of the equation (x2+1)2(x^{2}+1)^{2}.\newlineCalculation: (x2+1)(x2+1)=x4+2x2+1(x^{2}+1)(x^{2}+1) = x^{4} + 2x^{2} + 1
  2. Expand Right Side: Expand the right side of the equation (x21)2+(2x)2(x^{2}-1)^{2}+(2x)^{2}.\newlineCalculation: (x21)(x21)+(2x)(2x)=x42x2+1+4x2(x^{2}-1)(x^{2}-1) + (2x)(2x) = x^{4} - 2x^{2} + 1 + 4x^{2}
  3. Combine Like Terms: Combine like terms on the right side.\newlineCalculation: x42x2+1+4x2=x4+2x2+1x^{4} - 2x^{2} + 1 + 4x^{2} = x^{4} + 2x^{2} + 1
  4. Compare Expanded Forms: Compare the expanded forms of both sides.\newlineCalculation: Left side = x4+2x2+1x^{4} + 2x^{2} + 1, Right side = x4+2x2+1x^{4} + 2x^{2} + 1
  5. Determine Identity: Determine if the equation is an identity.\newlineCalculation: Since both sides are equal, the equation is an identity.

More problems from Solve linear equations with variables on both sides: word problems