Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(2x+3)^(4)+(2x+3)^(3)
Answer:

Factor completely:\newline(2x+3)4+(2x+3)3 (2 x+3)^{4}+(2 x+3)^{3} \newlineAnswer:

Full solution

Q. Factor completely:\newline(2x+3)4+(2x+3)3 (2 x+3)^{4}+(2 x+3)^{3} \newlineAnswer:
  1. Recognize common factor: Recognize the common factor in both terms.\newlineBoth terms have a common factor of (2x+3)3(2x+3)^{3}. We can factor this out using the distributive property.
  2. Factor out common factor: Factor out the common factor of (2x+3)3(2x+3)^{3}.(2x+3)4+(2x+3)3=(2x+3)3×((2x+3)+1)(2x+3)^{4}+(2x+3)^{3} = (2x+3)^{3} \times ((2x+3) + 1)
  3. Simplify inside parentheses: Simplify the expression inside the parentheses.\newline(2x+3)+1=2x+3+1=2x+4(2x+3) + 1 = 2x + 3 + 1 = 2x + 4
  4. Write final factored form: Write the final factored form.\newlineThe factored expression is (2x+3)3×(2x+4)(2x+3)^{3} \times (2x + 4).

More problems from Transformations of functions