Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(2x-3)^(2)(x-8)-(2x-3)(3x+4)
Answer:

Factor completely:\newline(2x3)2(x8)(2x3)(3x+4) (2 x-3)^{2}(x-8)-(2 x-3)(3 x+4) \newlineAnswer:

Full solution

Q. Factor completely:\newline(2x3)2(x8)(2x3)(3x+4) (2 x-3)^{2}(x-8)-(2 x-3)(3 x+4) \newlineAnswer:
  1. Identify Common Factor: Identify the common factor in both terms.\newlineThe expression is (2x3)2(x8)(2x3)(3x+4)(2x-3)^{2}(x-8)-(2x-3)(3x+4). We can see that (2x3)(2x-3) is a common factor in both terms.
  2. Factor Out Common Factor: Factor out the common factor (2x3)(2x-3). We can write the expression as (2x3)[(2x3)(x8)(3x+4)](2x-3)[(2x-3)(x-8)-(3x+4)] by factoring out (2x3)(2x-3).
  3. Distribute Common Factor: Distribute (2x3)(2x-3) in the first term inside the brackets.\newlineNow we distribute (2x3)(2x-3) to (x8)(x-8) to get (2x3)[(2x3)(x8)]=(2x3)(2x216x+3x24)(2x-3)[(2x-3)(x-8)] = (2x-3)(2x^2 - 16x + 3x - 24).
  4. Combine Like Terms: Combine like terms inside the brackets. Simplify the expression inside the brackets to get (2x3)(2x213x24)(2x-3)(2x^2 - 13x - 24).
  5. Subtract and Simplify: Subtract (3x+4)(3x+4) from the simplified expression inside the brackets.\newlineNow subtract (3x+4)(3x+4) from (2x213x24)(2x^2 - 13x - 24) to get (2x3)(2x213x243x4)(2x-3)(2x^2 - 13x - 24 - 3x - 4).
  6. Combine Like Terms: Combine like terms inside the brackets after subtraction. Combine the terms to get (2x3)(2x216x28)(2x-3)(2x^2 - 16x - 28).
  7. Factor Quadratic Expression: Factor the quadratic expression inside the brackets if possible.\newlineWe need to check if the quadratic expression 2x216x282x^2 - 16x - 28 can be factored further. However, this quadratic does not factor nicely with integer coefficients, so it is already in its simplest form.
  8. Write Final Factored Form: Write the final factored form.\newlineThe completely factored form of the expression is (2x3)(2x216x28)(2x-3)(2x^2 - 16x - 28).

More problems from Add, subtract, multiply, and divide polynomials