Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)=x^(3)-4x^(2)+3x-12
The function 
f is shown. If 
x-4 is a factor of 
f, what is the value of 
f(4) ?
Choose 1 answer:
(A) -12
(B) 0
(C) 12
(D) 64

The function ff is shown. If x4x-4 is a factor of ff, what is the value of f(4)f(4) ?\newlineChoose 11 answer:\newline(A) 12-12\newline(B) 00\newline(C) 1212\newline(D) 6464

Full solution

Q. The function ff is shown. If x4x-4 is a factor of ff, what is the value of f(4)f(4) ?\newlineChoose 11 answer:\newline(A) 12-12\newline(B) 00\newline(C) 1212\newline(D) 6464
  1. Verify Factor Theorem: If x4x-4 is a factor of f(x)f(x), then by the Factor Theorem, f(4)f(4) should be equal to 00. Let's calculate f(4)f(4) to verify this.
  2. Substitute x=4x = 4: Substitute x=4x = 4 into the polynomial f(x)=x34x2+3x12f(x) = x^3 - 4x^2 + 3x - 12.\newlinef(4)=(4)34(4)2+3(4)12f(4) = (4)^3 - 4\cdot(4)^2 + 3\cdot(4) - 12
  3. Calculate f(4)f(4): Calculate the value of f(4)f(4).
    f(4)=644×16+3×412f(4) = 64 - 4 \times 16 + 3 \times 4 - 12
    f(4)=6464+1212f(4) = 64 - 64 + 12 - 12
  4. Simplify Expression: Simplify the expression to find the value of f(4)f(4).f(4)=0f(4) = 0

More problems from Complex conjugate theorem