Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)={[-4x," for ",x < -1],[-x+1," for ",-1 <= x <= 3],[-2x+8," for ",x > 3]:}
Find 
f(3)
Answer:

f(x)={4xamp; for amp;xlt;1x+1amp; for amp;1x32x+8amp; for amp;xgt;3 f(x)=\left\{\begin{array}{lll} -4 x &amp; \text { for } &amp; x&lt;-1 \\ -x+1 &amp; \text { for } &amp; -1 \leq x \leq 3 \\ -2 x+8 &amp; \text { for } &amp; x&gt;3 \end{array}\right. \newlineFind f(3) f(3) \newlineAnswer:\newline

Full solution

Q. f(x)={4x for x<1x+1 for 1x32x+8 for x>3 f(x)=\left\{\begin{array}{lll} -4 x & \text { for } & x<-1 \\ -x+1 & \text { for } & -1 \leq x \leq 3 \\ -2 x+8 & \text { for } & x>3 \end{array}\right. \newlineFind f(3) f(3) \newlineAnswer:\newline
  1. Identify Function Piece: Since 33 is within the range 1x3-1 \leq x \leq 3, we use the second piece of the function, which is f(x)=x+1f(x) = -x + 1.
  2. Substitute x=3x = 3: Now we substitute x=3x = 3 into the function: f(3)=(3)+1f(3) = -(3) + 1.
  3. Perform Calculation: Perform the calculation: f(3)=3+1=2f(3) = -3 + 1 = -2.

More problems from Solve absolute value inequalities