Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

F(x)=|4x-20|

f(x)=F^(')(x)

int_(-5)^(5)f(x)dx=

F(x)=4x20 F(x)=|4 x-20| \newlinef(x)=F(x) f(x)=F^{\prime}(x) \newline55f(x)dx= \int_{-5}^{5} f(x) d x=

Full solution

Q. F(x)=4x20 F(x)=|4 x-20| \newlinef(x)=F(x) f(x)=F^{\prime}(x) \newline55f(x)dx= \int_{-5}^{5} f(x) d x=
  1. Find Derivative of F(x): First, we need to find the derivative of F(x) to get f(x), which is F(x)F'(x). F(x)=4x20F(x) = |4x - 20|, so we need to consider two cases for the derivative since it's an absolute value function.
  2. Consider Two Cases: Case 11: For x > 5, 4x - 20 > 0, so F(x)=4x20F(x) = 4x - 20 and F(x)=4F'(x) = 4. Case 22: For x < 5, 4x - 20 < 0, so F(x)=(4x20)F(x) = -(4x - 20) and F(x)=4F'(x) = -4.
  3. Integrate f(x)f(x) Correctly: Now we need to integrate f(x)f(x) from 5-5 to 55. But we made a mistake in the previous step, we should correct the cases for xx relative to 55.

More problems from Evaluate a nonlinear function