Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express 
z_(1)=-5sqrt5-5sqrt15i in polar form.
Express your answer in exact terms, using radians, where your angle is between 0 and 
2pi radians, inclusive.

z_(1)=

Express z1=55515i z_{1}=-5 \sqrt{5}-5 \sqrt{15} i in polar form.\newlineExpress your answer in exact terms, using radians, where your angle is between 00 and 2π 2 \pi radians, inclusive.\newlinez1= z_{1}=

Full solution

Q. Express z1=55515i z_{1}=-5 \sqrt{5}-5 \sqrt{15} i in polar form.\newlineExpress your answer in exact terms, using radians, where your angle is between 00 and 2π 2 \pi radians, inclusive.\newlinez1= z_{1}=
  1. Magnitude Calculation: To express the complex number z1=55515i z_1 = -5\sqrt{5} - 5\sqrt{15}i in polar form, we need to find its magnitude (r) and angle (θ\theta) with respect to the positive x-axis. The polar form is given by r(cos(θ)+isin(θ)) r(\cos(\theta) + i\sin(\theta)) .
  2. Angle Calculation: First, calculate the magnitude r r using the formula r=a2+b2 r = \sqrt{a^2 + b^2} , where a a is the real part and b b is the imaginary part of the complex number.\newlineFor z1 z_1 , a=55 a = -5\sqrt{5} and b=515 b = -5\sqrt{15} .\newlineSo, r=(55)2+(515)2 r = \sqrt{(-5\sqrt{5})^2 + (-5\sqrt{15})^2} .
  3. Polar Form Calculation: Perform the calculation for r r :\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} \newliner=125+375 r = \sqrt{125 + 375} \newliner=500 r = \sqrt{500} \newliner=520 r = 5\sqrt{20} \newliner=105 r = 10\sqrt{5}
  4. Polar Form Calculation: Perform the calculation for r r :\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} \newliner=125+375 r = \sqrt{125 + 375} \newliner=500 r = \sqrt{500} \newliner=520 r = 5\sqrt{20} \newliner=105 r = 10\sqrt{5} Next, we need to find the angle θ \theta . The angle is determined by the arctangent of b/a b/a , but since both a a and b b are negative, r=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 00 lies in the third quadrant. Therefore, we add r=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 11 radians to the arctangent to get the angle in the correct quadrant.\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 22\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 33
  5. Polar Form Calculation: Perform the calculation for r r :\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} \newliner=125+375 r = \sqrt{125 + 375} \newliner=500 r = \sqrt{500} \newliner=520 r = 5\sqrt{20} \newliner=105 r = 10\sqrt{5} Next, we need to find the angle θ \theta . The angle is determined by the arctangent of b/a b/a , but since both a a and b b are negative, r=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 00 lies in the third quadrant. Therefore, we add r=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 11 radians to the arctangent to get the angle in the correct quadrant.\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 22\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 33Simplify the expression for θ \theta :\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 55\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 66\newlineSince r=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 77 corresponds to r=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 88 radians,\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 99\newliner=125+375 r = \sqrt{125 + 375} 00
  6. Polar Form Calculation: Perform the calculation for r r :\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} \newliner=125+375 r = \sqrt{125 + 375} \newliner=500 r = \sqrt{500} \newliner=520 r = 5\sqrt{20} \newliner=105 r = 10\sqrt{5} Next, we need to find the angle θ \theta . The angle is determined by the arctangent of b/a b/a , but since both a a and b b are negative, r=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 00 lies in the third quadrant. Therefore, we add r=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 11 radians to the arctangent to get the angle in the correct quadrant.\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 22\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 33Simplify the expression for θ \theta :\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 55\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 66\newlineSince r=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 77 corresponds to r=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 88 radians,\newliner=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 99\newliner=125+375 r = \sqrt{125 + 375} 00Now we can write the polar form of r=255+2515 r = \sqrt{25 \cdot 5 + 25 \cdot 15} 00 using r r and θ \theta :\newliner=125+375 r = \sqrt{125 + 375} 44

More problems from Find the inverse of a linear function