Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express 
z_(1)=3sqrt3-9i in polar form.
Express your answer in exact terms, using radians, where your angle is between 0 and 
2pi radians, inclusive.

z_(1)=

Express z1=339i z_{1}=3 \sqrt{3}-9 i in polar form.\newlineExpress your answer in exact terms, using radians, where your angle is between 00 and 2π 2 \pi radians, inclusive.\newlinez1= z_{1}=

Full solution

Q. Express z1=339i z_{1}=3 \sqrt{3}-9 i in polar form.\newlineExpress your answer in exact terms, using radians, where your angle is between 00 and 2π 2 \pi radians, inclusive.\newlinez1= z_{1}=
  1. Magnitude Calculation: To express the complex number z1=339i z_1 = 3\sqrt{3} - 9i in polar form, we need to find its magnitude (r) and angle (θ\theta) with respect to the positive x-axis. The polar form is given by r(cos(θ)+isin(θ)) r(\cos(\theta) + i\sin(\theta)) or reiθ re^{i\theta} .
  2. Angle Calculation: First, calculate the magnitude r r using the formula r=a2+b2 r = \sqrt{a^2 + b^2} , where a=33 a = 3\sqrt{3} is the real part and b=9 b = -9 is the imaginary part of the complex number.\newliner=(33)2+(9)2=27+81=108=63 r = \sqrt{(3\sqrt{3})^2 + (-9)^2} = \sqrt{27 + 81} = \sqrt{108} = 6\sqrt{3} .
  3. Angle Calculation Continued: Next, we need to find the angle θ \theta . The angle is determined by the arctangent of the imaginary part divided by the real part, θ=arctan(ba) \theta = \arctan\left(\frac{b}{a}\right) . However, since the complex number is in the fourth quadrant (real part positive, imaginary part negative), we need to add 2π 2\pi to the angle to ensure it is between 00 and 2π 2\pi .\newlineθ=arctan(933)+2π \theta = \arctan\left(\frac{-9}{3\sqrt{3}}\right) + 2\pi .
  4. Polar Form Calculation: Calculate the angle θ \theta using the values of a a and b b .\newlineθ=arctan(933)+2π=arctan(933)+2π=arctan(33)+2π=arctan(3)+2π \theta = \arctan\left(\frac{-9}{3\sqrt{3}}\right) + 2\pi = \arctan\left(\frac{-9}{3\sqrt{3}}\right) + 2\pi = \arctan\left(\frac{-3}{\sqrt{3}}\right) + 2\pi = \arctan(-\sqrt{3}) + 2\pi .\newlineSince arctan(3) \arctan(-\sqrt{3}) corresponds to π3 -\frac{\pi}{3} , we have:\newlineθ=π3+2π=5π3 \theta = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3} .
  5. Polar Form Calculation: Calculate the angle θ \theta using the values of a a and b b .\newlineθ=arctan(933)+2π=arctan(933)+2π=arctan(33)+2π=arctan(3)+2π \theta = \arctan\left(\frac{-9}{3\sqrt{3}}\right) + 2\pi = \arctan\left(\frac{-9}{3\sqrt{3}}\right) + 2\pi = \arctan\left(\frac{-3}{\sqrt{3}}\right) + 2\pi = \arctan(-\sqrt{3}) + 2\pi .\newlineSince arctan(3) \arctan(-\sqrt{3}) corresponds to π3 -\frac{\pi}{3} , we have:\newlineθ=π3+2π=5π3 \theta = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3} .Now we can write the complex number in polar form using the magnitude r r and angle θ \theta we found.\newlinez1=63(cos(5π3)+isin(5π3)) z_1 = 6\sqrt{3}(\cos(\frac{5\pi}{3}) + i\sin(\frac{5\pi}{3})) .

More problems from Find the inverse of a linear function