Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the radical using the imaginary unit, 
i.
Express your answer in simplified form.

+-sqrt(-55)=+-◻

Express the radical using the imaginary unit, i i .\newlineExpress your answer in simplified form.\newline±55=± \pm \sqrt{-55}= \pm \square

Full solution

Q. Express the radical using the imaginary unit, i i .\newlineExpress your answer in simplified form.\newline±55=± \pm \sqrt{-55}= \pm \square
  1. Express as product: Express ±55\pm\sqrt{-55} as the product of square roots and 1\sqrt{-1}.\newline±55=±1×55\pm\sqrt{-55} = \pm\sqrt{-1 \times 55}
  2. Use complex number: Express ±1×55\pm\sqrt{-1 \times 55} as a complex number by using ii.\newline±55=±1×55\pm\sqrt{-55} = \pm\sqrt{-1} \times \sqrt{55}
  3. Replace 1\sqrt{-1}: Replace 1\sqrt{-1} with ii to get the expression in terms of the imaginary unit.\newline±55=±i55\pm\sqrt{-55} = \pm i \cdot \sqrt{55}
  4. Two possible values: Since there is a ±\pm sign, we have two possible values: +i55+i \sqrt{55} and i55-i \sqrt{55}.
  5. Simplify final answer: Simplify the expression by writing the final answer with the imaginary unit ii. ±55=±i55=±i55\pm\sqrt{-55} = \pm i \cdot \sqrt{55} = \pm i\sqrt{55}

More problems from Introduction to complex numbers