Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the radical using the imaginary unit, 
i.
Express your answer in simplified form.

+-sqrt(-48)=+-◻

Express the radical using the imaginary unit, i i .\newlineExpress your answer in simplified form.\newline±48=± \pm \sqrt{-48}= \pm \square

Full solution

Q. Express the radical using the imaginary unit, i i .\newlineExpress your answer in simplified form.\newline±48=± \pm \sqrt{-48}= \pm \square
  1. Express in terms of i: First, we need to express ±48\pm\sqrt{-48} in terms of ii, which represents the square root of 1-1. ±48=±1×48\pm\sqrt{-48} = \pm\sqrt{-1 \times 48}
  2. Separate square roots: Next, we can separate the square root of 1-1 from the square root of 4848.±1×48=±1×48\pm\sqrt{-1 \times 48} = \pm\sqrt{-1} \times \sqrt{48}
  3. Replace 1\sqrt{-1} with ii: Now, we replace 1\sqrt{-1} with ii, since ii is defined as the square root of 1-1.±1×48=±i×48\pm\sqrt{-1} \times \sqrt{48} = \pm i \times \sqrt{48}
  4. Simplify 48\sqrt{48}: We can simplify 48\sqrt{48} by factoring it into 16×3\sqrt{16 \times 3}, since 1616 is a perfect square.\newline±i×48=±i×16×3\pm i \times \sqrt{48} = \pm i \times \sqrt{16 \times 3}
  5. Take square root of 1616: Now, we take the square root of 1616, which is 44, outside the radical.±i163=±i43\pm i \cdot \sqrt{16 \cdot 3} = \pm i \cdot 4 \cdot \sqrt{3}
  6. Multiply by 44: Finally, we multiply the 44 by the ±i\pm i to get the simplified form.\newline±i×4×3=±4i×3\pm i \times 4 \times \sqrt{3} = \pm 4i \times \sqrt{3}

More problems from Introduction to complex numbers