Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(4-3i)/(-4-4i)
Answer:

Express as a complex number in simplest a+bi form:\newline43i44i \frac{4-3 i}{-4-4 i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline43i44i \frac{4-3 i}{-4-4 i} \newlineAnswer:
  1. Identify Conjugate: To simplify a complex fraction, we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of a complex number a+bia + bi is abia - bi. So, the conjugate of 44i-4 - 4i is 4+4i-4 + 4i.
  2. Multiply Numerator and Denominator: Now, we multiply both the numerator and the denominator by the conjugate of the denominator: \newline(43i)×(4+4i)/(44i)×(4+4i)(4 - 3i) \times (-4 + 4i) / (-4 - 4i) \times (-4 + 4i)
  3. Perform Multiplication in Numerator: We perform the multiplication in the numerator:\newline(4×4)+(4×4i)+(3i×4)+(3i×4i)=16+16i+12i12i2(4 \times -4) + (4 \times 4i) + (-3i \times -4) + (-3i \times 4i) = -16 + 16i + 12i - 12i^2\newlineSince i2=1i^2 = -1, we replace 12i2-12i^2 with 1212:\newline16+16i+12i+12=4+28i-16 + 16i + 12i + 12 = -4 + 28i
  4. Perform Multiplication in Denominator: We perform the multiplication in the denominator:\newline(4×4)+(4×4i)+(4i×4)+(4i×4i)=1616i+16i16i2(-4 \times -4) + (-4 \times 4i) + (-4i \times -4) + (-4i \times 4i) = 16 - 16i + 16i - 16i^2\newlineAgain, replacing i2i^2 with 1-1, we get:\newline1616i+16i+16=3216 - 16i + 16i + 16 = 32
  5. Simplify Numerator and Denominator: Now we have the simplified numerator and denominator:\newline(4+28i)/32(-4 + 28i) / 32\newlineWe can simplify this by dividing both the real part and the imaginary part by 3232:\newline432+28i32-\frac{4}{32} + \frac{28i}{32}
  6. Final Simplification: Simplify the fractions:\newline18+(78)i-\frac{1}{8} + \left(\frac{7}{8}\right)i\newlineThis is the complex number in a+bia+bi form.

More problems from Even and odd functions