Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(30-10 i)/(-10+10 i)
Answer:

Express as a complex number in simplest a+bi form:\newline3010i10+10i \frac{30-10 i}{-10+10 i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline3010i10+10i \frac{30-10 i}{-10+10 i} \newlineAnswer:
  1. Write Given Complex Fraction: Write down the given complex fraction.\newlineWe are given the complex fraction (3010i)/(10+10i)(30-10i)/(-10+10i) and we need to express it in the form a+bia+bi.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineThe conjugate of the denominator 10+10i-10+10i is 1010i-10-10i. We multiply both the numerator and the denominator by this conjugate to remove the imaginary part from the denominator.\newline(3010i)(1010i)(10+10i)(1010i)\frac{(30-10i)(-10-10i)}{(-10+10i)(-10-10i)}
  3. Multiply Numerator: Perform the multiplication in the numerator.\newline(3010i)(1010i)=30(10)+30(10i)10i(10)10i(10i)(30-10i)(-10-10i) = 30(-10) + 30(-10i) - 10i(-10) - 10i(-10i)\newline=300300i+100i+100= -300 - 300i + 100i + 100\newline=200200i+100i2= -200 - 200i + 100i^2\newlineSince i2=1i^2 = -1, we have:\newline=200200i100= -200 - 200i - 100\newline=300200i= -300 - 200i
  4. Multiply Denominator: Perform the multiplication in the denominator.\newline(10+10i)(1010i)=(10)(10)10i(10)+10i(10)(10i)(10i)(-10+10i)(-10-10i) = (-10)(-10) - 10i(-10) + 10i(-10) - (10i)(10i)\newline=100+100i100i100i2= 100 + 100i - 100i - 100i^2\newlineSince i2=1i^2 = -1, we have:\newline=100+100i100i+100= 100 + 100i - 100i + 100\newline=200= 200
  5. Divide by Denominator: Divide the numerator by the denominator.\newlineWe have the numerator as 300200i-300 - 200i and the denominator as 200200. Dividing the numerator by the denominator gives us:\newline(300200i)/200(-300 - 200i) / 200\newline=300/200(200i/200)= -300/200 - (200i/200)\newline=1.5i= -1.5 - i

More problems from Rational root theorem