Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(10-5i)/(-5-6i)
Answer:

Express as a complex number in simplest a+bi form:\newline105i56i \frac{10-5 i}{-5-6 i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline105i56i \frac{10-5 i}{-5-6 i} \newlineAnswer:
  1. Identify Conjugate: To simplify a complex fraction, we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of a complex number a+bia + bi is abia - bi. So, the conjugate of 56i-5 - 6i is 5+6i-5 + 6i.
  2. Multiply by Conjugate: Now, we multiply both the numerator and the denominator by the conjugate of the denominator to eliminate the imaginary part in the denominator.\newline(105i)×(5+6i)/(56i)×(5+6i)(10 - 5i) \times (-5 + 6i) / (-5 - 6i) \times (-5 + 6i)
  3. Distribute Multiplication: We distribute the multiplication in the numerator and the denominator.\newlineNumerator: 10×510 \times -5 + 10×6i10 \times 6i + 5i×5 -5i \times -5 + 5i×6i -5i \times 6i\newlineDenominator: 5×5 -5 \times -5 + 5×6i -5 \times 6i + 6i×5 -6i \times -5 + 6i×6i -6i \times 6i
  4. Simplify Multiplication: We simplify the multiplication.\newlineNumerator: 50+60i+25i30i2-50 + 60i + 25i - 30i^2\newlineDenominator: 2530i+30i36i225 - 30i + 30i - 36i^2\newlineNote that i2=1i^2 = -1.
  5. Replace i2i^2: We replace i2i^2 with 1-1 and simplify further.\newlineNumerator: 50+60i+25i+30-50 + 60i + 25i + 30\newlineDenominator: 25+3625 + 36\newlineNumerator: 20+85i-20 + 85i\newlineDenominator: 6161
  6. Divide by Denominator: We divide the real and imaginary parts of the numerator by the denominator to get the complex number in a+bia+bi form.\newlineReal part: 2061-\frac{20}{61}\newlineImaginary part: 85i61\frac{85i}{61}
  7. Final Answer: We write the final answer in a+bia+bi form.\newlineFinal answer: (2061)+(8561)i\left(-\frac{20}{61}\right) + \left(\frac{85}{61}\right)i

More problems from Even and odd functions