Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the expression as a single logarithm.
7log_(c)(w-7)-3log_(c)(w+2)

Write the expression as a single logarithm.\newline7logc(w7)3logc(w+2)7 \log _{c}(w-7)-3 \log _{c}(w+2)

Full solution

Q. Write the expression as a single logarithm.\newline7logc(w7)3logc(w+2)7 \log _{c}(w-7)-3 \log _{c}(w+2)
  1. Apply Power Rule: Apply the power rule of logarithms to both terms.\newlineThe power rule states that logb(an)=nlogb(a)\log_b(a^n) = n\log_b(a). We can apply this rule in reverse to move the coefficients of the logarithms up as exponents of their arguments.\newline7logc(w7)7\log_c(w-7) becomes logc((w7)7)\log_c((w-7)^7)\newline3logc(w+2)3\log_c(w+2) becomes logc((w+2)3)\log_c((w+2)^3)
  2. Apply Quotient Rule: Apply the quotient rule of logarithms to combine the two logarithms into one.\newlineThe quotient rule states that logb(a)logb(c)=logb(ac)\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right). We can use this rule to combine our two logarithms into a single logarithm.\newlinelogc((w7)7)logc((w+2)3)\log_c\left((w-7)^7\right) - \log_c\left((w+2)^3\right) becomes logc((w7)7(w+2)3)\log_c\left(\frac{(w-7)^7}{(w+2)^3}\right)

More problems from Properties of logarithms: mixed review