Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((x^(2))/(sqrtzy^(2)))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogx2zy2 \log \frac{x^{2}}{\sqrt{z} y^{2}} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogx2zy2 \log \frac{x^{2}}{\sqrt{z} y^{2}} \newlineAnswer:
  1. Apply Quotient Rule: Apply the quotient rule of logarithms to the expression log(x2yy2)\log\left(\frac{x^{2}}{\sqrt{y}\cdot y^{2}}\right). Quotient rule of logarithms: log(ab)=log(a)log(b)\log\left(\frac{a}{b}\right) = \log(a) - \log(b) log(x2yy2)=log(x2)log(yy2)\log\left(\frac{x^{2}}{\sqrt{y}\cdot y^{2}}\right) = \log(x^{2}) - \log(\sqrt{y}\cdot y^{2})
  2. Apply Product Rule: Apply the product rule of logarithms to the denominator part of the expression log(yy2)\log(\sqrt{y}\cdot y^{2}).\newlineProduct rule of logarithms: log(ab)=log(a)+log(b)\log(a\cdot b) = \log(a) + \log(b)\newlinelog(yy2)=log(y)+log(y2)\log(\sqrt{y}\cdot y^{2}) = \log(\sqrt{y}) + \log(y^{2})
  3. Apply Power Rule: Apply the power rule of logarithms to the expressions log(x2)\log(x^{2}), log(y)\log(\sqrt{y}), and log(y2)\log(y^{2}).
    Power rule of logarithms: log(an)=nlog(a)\log(a^{n}) = n\log(a)
    log(x2)=2log(x)\log(x^{2}) = 2\log(x)
    log(y)=log(y12)=12log(y)\log(\sqrt{y}) = \log(y^{\frac{1}{2}}) = \frac{1}{2}\log(y)
    log(y2)=2log(y)\log(y^{2}) = 2\log(y)
  4. Substitute Results: Substitute the results from Step 33 into the expression from Step 11.\newlinelog(x2yy2)=2log(x)(12log(y)+2log(y))\log\left(\frac{x^{2}}{\sqrt{y}y^{2}}\right) = 2\log(x) - \left(\frac{1}{2}\log(y) + 2\log(y)\right)
  5. Distribute and Combine: Distribute the negative sign and combine the logarithmic terms involving log(y)\log(y).2log(x)(12)log(y)2log(y)=2log(x)(12+2)log(y)2\log(x) - (\frac{1}{2})\log(y) - 2\log(y) = 2\log(x) - (\frac{1}{2} + 2)\log(y)
  6. Simplify Expression: Simplify the expression by combining the coefficients for log(y)\log(y).2log(x)(12+2)log(y)=2log(x)(52)log(y)2\log(x) - \left(\frac{1}{2} + 2\right)\log(y) = 2\log(x) - \left(\frac{5}{2}\right)\log(y)
  7. Write Final Form: Write the final expanded form of the logarithm.\newlineThe final expanded form is 2log(x)(52)log(y)2\log(x) - \left(\frac{5}{2}\right)\log(y).

More problems from Quotient property of logarithms