Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((yx^(4))/(root(3)(z^(4))))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogyx4z43 \log \frac{y x^{4}}{\sqrt[3]{z^{4}}} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogyx4z43 \log \frac{y x^{4}}{\sqrt[3]{z^{4}}} \newlineAnswer:
  1. Apply Quotient Rule: Apply the quotient rule of logarithms to the expression log(yx4z43)\log\left(\frac{yx^{4}}{\sqrt[3]{z^{4}}}\right).\newlineQuotient rule of logarithm: log(ab)=log(a)log(b)\log\left(\frac{a}{b}\right) = \log(a) - \log(b)\newlinelog(yx4z43)=log(yx4)log(z43)\log\left(\frac{yx^{4}}{\sqrt[3]{z^{4}}}\right) = \log(yx^{4}) - \log(\sqrt[3]{z^{4}})
  2. Apply Product Rule: Apply the product rule of logarithms to the numerator log(yx4)\log(yx^{4}).\newlineProduct rule of logarithm: log(ab)=log(a)+log(b)\log(a \cdot b) = \log(a) + \log(b)\newlinelog(yx4)=log(y)+log(x4)\log(yx^{4}) = \log(y) + \log(x^{4})
  3. Apply Power Rule: Apply the power rule of logarithms to log(x4)\log(x^{4}).\newlinePower rule of logarithm: log(an)=nlog(a)\log(a^{n}) = n \cdot \log(a)\newlinelog(x4)=4log(x)\log(x^{4}) = 4 \cdot \log(x)
  4. Apply Power Rule: Apply the power rule of logarithms to the denominator log(z43)\log(\sqrt[3]{z^{4}}). The cube root can be written as a power of 13\frac{1}{3}, and the power rule of logarithms can be applied. log(z43)=log((z4)13)\log(\sqrt[3]{z^{4}}) = \log((z^{4})^{\frac{1}{3}}) log((z4)13)=13log(z4)\log((z^{4})^{\frac{1}{3}}) = \frac{1}{3} \cdot \log(z^{4})
  5. Apply Power Rule: Apply the power rule of logarithms to log(z4)\log(z^{4}).\newlinelog(z4)=4log(z)\log(z^{4}) = 4 \cdot \log(z)
  6. Substitute and Simplify: Substitute the results from Steps 33 and 55 into the expression from Step 11. log(yx4z43)=(log(y)+4log(x))(13)(4log(z))\log\left(\frac{y x^{4}}{\sqrt[3]{z^{4}}}\right) = (\log(y) + 4 \cdot \log(x)) - \left(\frac{1}{3}\right) \cdot (4 \cdot \log(z))
  7. Distribute and Simplify: Distribute the 13\frac{1}{3} in the second term and simplify the expression.log(yx4z43)=log(y)+4log(x)(43)log(z)\log\left(\frac{yx^{4}}{\sqrt[3]{z^{4}}}\right) = \log(y) + 4 \cdot \log(x) - \left(\frac{4}{3}\right) \cdot \log(z)

More problems from Quotient property of logarithms