Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x, and 
log y.

log x^(3)y^(4)
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx \log x , and logy \log y .\newlinelogx3y4 \log x^{3} y^{4} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx \log x , and logy \log y .\newlinelogx3y4 \log x^{3} y^{4} \newlineAnswer:
  1. Identify Properties: Identify the properties used to expand logx3y4\log x^{3}y^{4}.\newlineWe will use the product property of logarithms to separate the terms and the power property to bring down the exponents.\newlineProduct property: logb(mn)=logb(m)+logb(n)\log_b(mn) = \log_b(m) + \log_b(n)\newlinePower property: logb(mn)=nlogb(m)\log_b(m^n) = n \cdot \log_b(m)
  2. Apply Product Property: Apply the product property to logx3y4\log x^{3}y^{4}. Using the product property, we can write logx3y4\log x^{3}y^{4} as the sum of two logarithms: logx3+logy4\log x^{3} + \log y^{4}. logx3y4=logx3+logy4\log x^{3}y^{4} = \log x^{3} + \log y^{4}
  3. Apply Power Property: Apply the power property to both logx3\log x^{3} and logy4\log y^{4}. Using the power property, we can bring the exponents out in front of the logarithms: logx3=3logx\log x^{3} = 3 \cdot \log x logy4=4logy\log y^{4} = 4 \cdot \log y
  4. Combine Results: Combine the results from Step 33 to get the final expanded form.\newlineThe final expanded form of the logarithm is the sum of the two terms we found:\newline3logx+4logy3 \cdot \log x + 4 \cdot \log y

More problems from Power property of logarithms