Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((root(3)(x))/(zy^(2)))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogx3zy2 \log \frac{\sqrt[3]{x}}{z y^{2}} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogx3zy2 \log \frac{\sqrt[3]{x}}{z y^{2}} \newlineAnswer:
  1. Apply Quotient Rule: Apply the quotient rule of logarithms to the expression log(x3zy2)\log\left(\frac{\sqrt[3]{x}}{zy^{2}}\right). Quotient rule of logarithm: log(ab)=log(a)log(b)\log\left(\frac{a}{b}\right) = \log(a) - \log(b) log(x3zy2)=log(x3)log(zy2)\log\left(\frac{\sqrt[3]{x}}{zy^{2}}\right) = \log(\sqrt[3]{x}) - \log(zy^{2})
  2. Apply Cube Root Property: Apply the cube root property to the logarithm log(x3)\log(\sqrt[3]{x}).\newlineCube root property: log(a3)=13log(a)\log(\sqrt[3]{a}) = \frac{1}{3} \cdot \log(a)\newlinelog(x3)=13log(x)\log(\sqrt[3]{x}) = \frac{1}{3} \cdot \log(x)
  3. Apply Product Rule: Apply the product rule of logarithms to the expression log(zy2)\log(zy^{2}).\newlineProduct rule of logarithm: log(ab)=log(a)+log(b)\log(a \cdot b) = \log(a) + \log(b)\newlinelog(zy2)=log(z)+log(y2)\log(zy^{2}) = \log(z) + \log(y^{2})
  4. Apply Power Rule: Apply the power rule to the logarithm log(y2)\log(y^{2}).\newlinePower rule of logarithm: log(ab)=b×log(a)\log(a^{b}) = b \times \log(a)\newlinelog(y2)=2×log(y)\log(y^{2}) = 2 \times \log(y)
  5. Combine and Distribute: Combine the results from Steps 11 to 44 to get the final expanded form.\newlinelog(x3zy2)=13log(x)(log(z)+2log(y))\log\left(\frac{\sqrt[3]{x}}{zy^{2}}\right) = \frac{1}{3} \cdot \log(x) - (\log(z) + 2 \cdot \log(y))\newlineDistribute the negative sign:\newlinelog(x3zy2)=13log(x)log(z)2log(y)\log\left(\frac{\sqrt[3]{x}}{zy^{2}}\right) = \frac{1}{3} \cdot \log(x) - \log(z) - 2 \cdot \log(y)

More problems from Quotient property of logarithms