Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((y^(2)root(3)(z^(2)))/(x^(5)))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogy2z23x5 \log \frac{y^{2} \sqrt[3]{z^{2}}}{x^{5}} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogy2z23x5 \log \frac{y^{2} \sqrt[3]{z^{2}}}{x^{5}} \newlineAnswer:
  1. Identify Properties: Identify the properties of logarithms that will be used to expand the given logarithm.\newlineThe properties of logarithms that are relevant here are the quotient property, the power property, and the property for the logarithm of a root.\newlineQuotient Property: logb(PQ)=logb(P)logb(Q)\log_b(\frac{P}{Q}) = \log_b(P) - \log_b(Q)\newlinePower Property: logb(Pk)=klogb(P)\log_b(P^k) = k \cdot \log_b(P)\newlineRoot Property: logb(Pk)=1klogb(P)\log_b(\sqrt[k]{P}) = \frac{1}{k} \cdot \log_b(P)
  2. Apply Quotient Property: Apply the quotient property to the given logarithm.\newlineThe given logarithm is of the form log(y2z23x5)\log\left(\frac{y^{2} \cdot \sqrt[3]{z^{2}}}{x^{5}}\right). According to the quotient property, this can be written as:\newlinelog(y2z23)log(x5)\log(y^{2} \cdot \sqrt[3]{z^{2}}) - \log(x^{5})
  3. Apply Power Property: Apply the power property to the terms with exponents.\newlineThe term log(y2)\log(y^{2}) can be expanded using the power property as:\newline2×log(y)2 \times \log(y)\newlineSimilarly, the term log(x5)\log(x^{5}) can be expanded as:\newline5×log(x)5 \times \log(x)
  4. Apply Root Property: Apply the root property to the term with the cube root.\newlineThe term z23\sqrt[3]{z^{2}} can be written as z23z^{\frac{2}{3}}, and applying the power property to log(z23)\log(z^{\frac{2}{3}}) gives us:\newline23log(z)\frac{2}{3} \cdot \log(z)
  5. Combine Results: Combine the results from the previous steps to write the final expanded form.\newlineThe expanded form of the given logarithm is:\newline2log(y)+23log(z)5log(x)2 \cdot \log(y) + \frac{2}{3} \cdot \log(z) - 5 \cdot \log(x)

More problems from Quotient property of logarithms