Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((zx^(3))/(root(3)(y)))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogzx3y3 \log \frac{z x^{3}}{\sqrt[3]{y}} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogzx3y3 \log \frac{z x^{3}}{\sqrt[3]{y}} \newlineAnswer:
  1. Apply Quotient Rule: Apply the quotient rule of logarithms to the expression log(zx3y3)\log\left(\frac{zx^{3}}{\sqrt[3]{y}}\right).\newlineQuotient rule of logarithm: log(ab)=log(a)log(b)\log\left(\frac{a}{b}\right) = \log(a) - \log(b)\newlinelog(zx3y3)=log(zx3)log(y3)\log\left(\frac{zx^{3}}{\sqrt[3]{y}}\right) = \log(zx^{3}) - \log(\sqrt[3]{y})
  2. Apply Product Rule: Apply the product rule of logarithms to the term log(zx3)\log(zx^{3}).\newlineProduct rule of logarithm: log(ab)=log(a)+log(b)\log(a \cdot b) = \log(a) + \log(b)\newlinelog(zx3)=log(z)+log(x3)\log(zx^{3}) = \log(z) + \log(x^{3})
  3. Apply Power Rule: Apply the power rule of logarithms to the term log(x3)\log(x^{3}).\newlinePower rule of logarithm: log(an)=nlog(a)\log(a^n) = n \cdot \log(a)\newlinelog(x3)=3log(x)\log(x^{3}) = 3 \cdot \log(x)
  4. Apply Power Rule: Apply the power rule of logarithms to the term log(y3)\log(\sqrt[3]{y}). Since y3\sqrt[3]{y} is yy to the power of 13\frac{1}{3}, we can write: log(y3)=log(y13)\log(\sqrt[3]{y}) = \log(y^{\frac{1}{3}}) Then apply the power rule: log(y13)=13log(y)\log(y^{\frac{1}{3}}) = \frac{1}{3} \cdot \log(y)
  5. Combine Results: Combine the results from Steps 11 to 44 to get the final expanded form.\newlinelog(zx3y3)=log(z)+log(x3)log(y3)\log\left(\frac{zx^{3}}{\sqrt[3]{y}}\right) = \log(z) + \log(x^{3}) - \log(\sqrt[3]{y})\newlineSubstitute the results from Steps 33 and 44:\newlinelog(zx3y3)=log(z)+3log(x)(13)log(y)\log\left(\frac{zx^{3}}{\sqrt[3]{y}}\right) = \log(z) + 3 \cdot \log(x) - \left(\frac{1}{3}\right) \cdot \log(y)

More problems from Quotient property of logarithms