Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((root(3)(z^(4))y)/(x^(2)))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogz43yx2 \log \frac{\sqrt[3]{z^{4}} y}{x^{2}} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogz43yx2 \log \frac{\sqrt[3]{z^{4}} y}{x^{2}} \newlineAnswer:
  1. Apply Quotient Rule: Apply the quotient rule of logarithms to the expression log(z43yx2)\log\left(\frac{\sqrt[3]{z^{4}}y}{x^{2}}\right). Quotient rule of logarithm: log(ab)=log(a)log(b)\log\left(\frac{a}{b}\right) = \log(a) - \log(b) log(z43yx2)=log(z43y)log(x2)\log\left(\frac{\sqrt[3]{z^{4}}y}{x^{2}}\right) = \log(\sqrt[3]{z^{4}}y) - \log(x^{2})
  2. Apply Product Rule: Apply the product rule of logarithms to the numerator log(z43y)\log(\sqrt[3]{z^{4}}y).\newlineProduct rule of logarithm: log(ab)=log(a)+log(b)\log(a \cdot b) = \log(a) + \log(b)\newlinelog(z43y)=log(z43)+log(y)\log(\sqrt[3]{z^{4}}y) = \log(\sqrt[3]{z^{4}}) + \log(y)
  3. Rewrite Cube Root: Rewrite the cube root and the power inside the logarithm using the power rule of logarithms.\newlinePower rule of logarithm: log(an)=nlog(a)\log(a^{n}) = n \cdot \log(a)\newlinelog(z43)\log(\sqrt[3]{z^{4}}) can be written as log((z4)13)\log((z^{4})^{\frac{1}{3}}) which simplifies to (13)log(z4)(\frac{1}{3}) \cdot \log(z^{4})\newlineNow apply the power rule to log(z4)\log(z^{4}): (13)4log(z)(\frac{1}{3}) \cdot 4 \cdot \log(z)
  4. Apply Power Rule: Apply the power rule to the denominator log(x2)\log(x^{2}).\newlinelog(x2)=2log(x)\log(x^{2}) = 2 \cdot \log(x)
  5. Combine Results: Combine the results from Steps 11 to 44 to get the final expanded form.\newlinelog(z43yx2)=(log(z43)+log(y))log(x2)\log\left(\frac{\sqrt[3]{z^{4}}y}{x^{2}}\right) = \left(\log(\sqrt[3]{z^{4}}) + \log(y)\right) - \log(x^{2})\newlineSubstitute the expressions from Steps 33 and 44:\newlinelog(z43yx2)=(134log(z)+log(y))2log(x)\log\left(\frac{\sqrt[3]{z^{4}}y}{x^{2}}\right) = \left(\frac{1}{3} \cdot 4 \cdot \log(z) + \log(y)\right) - 2 \cdot \log(x)
  6. Simplify Expression: Simplify the expression. log(z43yx2)=43log(z)+log(y)2log(x)\log\left(\frac{\sqrt[3]{z^{4}}y}{x^{2}}\right) = \frac{4}{3} \cdot \log(z) + \log(y) - 2 \cdot \log(x)

More problems from Quotient property of logarithms